This file is indexed.

/usr/include/af/arith.h is in libarrayfire-dev 3.3.2+dfsg1-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#include <af/defines.h>

#ifdef __cplusplus
namespace af
{
    class array;

    /// \ingroup arith_func_min
    /// @{
    /// \brief C++ interface for min of two arrays
    ///
    /// \param[in] lhs first input
    /// \param[in] rhs second input
    /// \return minimum of \p lhs and \p rhs
    ///
    AFAPI array min    (const array &lhs, const array &rhs);

    /// \copydoc min(const array&, const array &)
    AFAPI array min    (const array &lhs, const double rhs);

    /// \copydoc min(const array&, const array &)
    AFAPI array min    (const double lhs, const array &rhs);
    /// @}

    /// \ingroup arith_func_max
    /// @{
    /// C++ Interface for max of two arrays or an array and a scalar
    ///
    /// \param[in] lhs first input
    /// \param[in] rhs second input
    /// \return maximum of \p lhs and \p rhs
    AFAPI array max    (const array &lhs, const array &rhs);

    /// \copydoc max(const array&, const array&)
    AFAPI array max    (const array &lhs, const double rhs);

    /// \copydoc max(const array&, const array&)
    AFAPI array max    (const double lhs, const array &rhs);
    /// @}

    /// \ingroup arith_func_rem
    /// @{
    /// C++ Interface for remainder when array divides array,
    /// scalar divides array or array divides scalar
    ///
    /// \param[in] lhs is numerator
    /// \param[in] rhs is denominator
    /// \return remainder when \p rhs divides \p lhs
    AFAPI array rem    (const array &lhs, const array &rhs);

    /// \copydoc rem(const array&, const array&)
    AFAPI array rem    (const array &lhs, const double rhs);

    /// \copydoc rem(const array&, const array&)
    AFAPI array rem    (const double lhs, const array &rhs);
    /// @}

    /// \ingroup arith_func_mod
    /// @{
    /// C++ Interface for modulus when dividend and divisor are arrays
    /// or one of them is scalar
    ///
    /// \param[in] lhs is dividend
    /// \param[in] rhs is divisor
    /// \return \p lhs modulo \p rhs
    AFAPI array mod    (const array &lhs, const array &rhs);

    /// \copydoc mod(const array&, const array&)
    AFAPI array mod    (const array &lhs, const double rhs);

    /// \copydoc mod(const array&, const array&)
    AFAPI array mod    (const double lhs, const array &rhs);
    /// @}

    /// C++ Interface for absolute value
    ///
    /// \param[in] in is input array
    /// \return absolute value of \p in
    ///
    /// \ingroup arith_func_abs
    AFAPI array abs    (const array &in);

    /**
       C++ Interface for arg

       \param[in] in is input array
       \return phase of \p in

       \ingroup arith_func_arg
    */
    AFAPI array arg    (const array &in);

    /**
       C++ Interface for getting the sign of input

       \param[in] in is input array
       \return the sign of each element of input

       \note output is 1 for negative numbers and 0 for positive numbers

       \ingroup arith_func_sign
    */
    AFAPI array sign  (const array &in);

    ///C++ Interface for rounding an array of numbers
    ///
    ///\param[in] in is input array
    ///\return values rounded to nearest integer
    ///
    ///\note The values are rounded to nearest integer
    ///
    ///\ingroup arith_func_round
    AFAPI array round  (const array &in);

    /**
       C++ Interface for truncating an array of numbers

       \param[in] in is input array
       \return values truncated to nearest integer not greater than input values

       \ingroup arith_func_trunc
    */
    AFAPI array trunc  (const array &in);


    /// C++ Interface for flooring an array of numbers
    ///
    /// \param[in] in is input array
    /// \return values rounded to nearest integer less than or equal to current value
    ///
    /// \ingroup arith_func_floor
    AFAPI array floor  (const array &in);

    /// C++ Interface for ceiling an array of numbers
    ///
    /// \param[in] in is input array
    /// \return values rounded to nearest integer greater than or equal to current value
    ///
    /// \ingroup arith_func_ceil
    AFAPI array ceil   (const array &in);

    /// \ingroup arith_func_hypot
    /// @{
    /// \brief C++ Interface for getting length of hypotenuse of two inputs
    ///
    /// Calculates the hypotenuse of two inputs. The inputs can be both arrays
    /// or an array and a scalar.
    ///
    /// \param[in] lhs is the length of first side
    /// \param[in] rhs is the length of second side
    /// \return the length of the hypotenuse
    AFAPI array hypot  (const array &lhs, const array &rhs);

    /// \copydoc hypot(const array&, const array&)
    AFAPI array hypot  (const array &lhs, const double rhs);

    /// \copydoc hypot(const array&, const array&)
    AFAPI array hypot  (const double lhs, const array &rhs);
    /// @}

    /// C++ Interface for sin
    ///
    /// \param[in] in is input array
    /// \return sin of input
    ///
    /// \ingroup arith_func_sin
    AFAPI array sin    (const array &in);

    /// C++ Interface for cos
    ///
    /// \param[in] in is input array
    /// \return cos of input
    ///
    /// \ingroup arith_func_cos
    AFAPI array cos    (const array &in);

    /// C++ Interface for tan
    ///
    /// \param[in] in is input array
    /// \return tan of input
    ///
    /// \ingroup arith_func_tan
    AFAPI array tan    (const array &in);

    /// C++ Interface for arc sin (sin inverse)
    ///
    /// \param[in] in is input array
    /// \return arc sin of input
    ///
    /// \ingroup arith_func_asin
    AFAPI array asin   (const array &in);

    /// C++ Interface for arc cos (cos inverse)
    ///
    /// \param[in] in is input array
    /// \return arc cos of input
    ///
    /// \ingroup arith_func_acos
    AFAPI array acos   (const array &in);

    /// C++ Interface for arc tan (tan inverse)
    ///
    /// \param[in] in is input array
    /// \return arc tan of input
    ///
    /// \ingroup arith_func_atan
    AFAPI array atan   (const array &in);

    /// \ingroup arith_func_atan
    /// @{
    /// C++ Interface for arc tan of two arrays
    ///
    /// \param[in] lhs value of numerator
    /// \param[in] rhs value of denominator
    /// \return arc tan of the inputs
    AFAPI array atan2  (const array &lhs, const array &rhs);

    /// \copydoc atan2(const array&, const array&)
    AFAPI array atan2  (const array &lhs, const double rhs);

    /// \copydoc atan2(const array&, const array&)
    AFAPI array atan2  (const double lhs, const array &rhs);
    /// @}

    /// \ingroup trig_func_cplx2
    /// @{
    /// C++ Interface for creating complex array from two inputs
    ///
    /// Creates a complex number from two sets of inputs. The left hand side is
    /// the real part and the right hand side is the imaginary part. This
    /// function accepts two \ref af::array or one \ref af::array and a scalar
    /// as nputs.
    ///
    /// \param[in] lhs is real value(s)
    /// \param[in] rhs is imaginary value(s)
    /// \return complex array from inputs
    /// \ingroup arith_func_cplx
    AFAPI array complex(const array &lhs, const array &rhs);

    /// \copydoc complex(const array&, const array&)
    /// \ingroup arith_func_cplx
    AFAPI array complex(const array &lhs, const double rhs);

    /// \copydoc complex(const array&, const array&)
    /// \ingroup arith_func_cplx
    AFAPI array complex(const double lhs, const array &rhs);

    /// C++ Interface for creating complex array from real array
    ///
    /// \param[in] in is real array
    /// \return complex array from \p in
    ///
    /// \ingroup arith_func_cplx
    AFAPI array complex(const array &in);
    /// @}

    /// C++ Interface for getting real part from complex array
    ///
    /// \param[in] in is complex array
    /// \return the real part of \p in
    ///
    /// \ingroup arith_func_real
    AFAPI array real   (const array &in);

    /// C++ Interface for getting imaginary part from complex array
    ///
    /// \param[in] in is complex array
    /// \return the imaginary part of \p in
    ///
    /// \ingroup arith_func_imag
    AFAPI array imag   (const array &in);

    /// C++ Interface for getting the complex conjugate of input array
    ///
    /// \param[in] in is complex array
    /// \return the complex conjugate of \p in
    ///
    /// \ingroup arith_func_conjg
    AFAPI array conjg  (const array &in);

    /// C++ Interface for sinh
    ///
    /// \param[in] in is input array
    /// \return sinh of input
    ///
    /// \ingroup arith_func_sinh
    AFAPI array sinh    (const array &in);

    /// C++ Interface for cosh
    ///
    /// \param[in] in is input array
    /// \return cosh of input
    ///
    /// \ingroup arith_func_cosh
    AFAPI array cosh    (const array &in);

    /// C++ Interface for tanh
    ///
    /// \param[in] in is input array
    /// \return tanh of input
    ///
    /// \ingroup arith_func_tanh
    AFAPI array tanh    (const array &in);

    /// C++ Interface for sinh inverse
    ///
    /// \param[in] in is input array
    /// \return sinh inverse of input
    ///
    /// \ingroup arith_func_asinh
    AFAPI array asinh   (const array &in);

    /// C++ Interface for cosh inverse
    ///
    /// \param[in] in is input array
    /// \return cosh inverse of input
    ///
    /// \ingroup arith_func_acosh
    AFAPI array acosh   (const array &in);

    /// C++ Interface for tanh inverse
    ///
    /// \param[in] in is input array
    /// \return tanh inverse of input
    ///
    /// \ingroup arith_func_atanh
    AFAPI array atanh   (const array &in);

    /// C++ Interface for nth root
    ///
    /// \param[in] lhs is nth root
    /// \param[in] rhs is value
    /// \return \p lhs th root of \p rhs
    ///
    /// \ingroup arith_func_root
    AFAPI array root    (const array &lhs, const array &rhs);

    /// C++ Interface for nth root
    ///
    /// \param[in] lhs is nth root
    /// \param[in] rhs is value
    /// \return \p lhs th root of \p rhs
    ///
    /// \ingroup arith_func_root
    AFAPI array root    (const array &lhs, const double rhs);

    /// C++ Interface for nth root
    ///
    /// \param[in] lhs is nth root
    /// \param[in] rhs is value
    /// \return \p lhs th root of \p rhs
    ///
    /// \ingroup arith_func_root
    AFAPI array root    (const double lhs, const array &rhs);


    /// \ingroup arith_func_pow
    /// @{
    /// \brief C++ Interface for power
    ///
    /// Computes the value of \p lhs raised to the power of \p rhs. The inputs
    /// can be two arrays or an array and a scalar.
    ///
    /// \param[in] lhs is base
    /// \param[in] rhs is exponent
    /// \return \p lhs raised to power \p rhs
    AFAPI array pow    (const array &lhs, const array &rhs);

    /// \copydoc pow(const array&, const array&)
    AFAPI array pow    (const array &lhs, const double rhs);

    /// \copydoc pow(const array&, const array&)
    AFAPI array pow    (const double lhs, const array &rhs);

    /// C++ Interface for power of 2
    ///
    /// \param[in] in is exponent
    /// \return 2 raised to power of \p in
    ///
    AFAPI array pow2    (const array &in);
    /// @}

#if AF_API_VERSION >= 31
    /// C++ Interface for calculating sigmoid function of an array
    ///
    /// \param[in] in is input
    /// \return the sigmoid of \p in
    ///
    /// \ingroup arith_func_sigmoid
    AFAPI array sigmoid (const array &in);
#endif

    /// C++ Interface for exponential of an array
    ///
    /// \param[in] in is exponent
    /// \return the exponential of \p in
    ///
    /// \ingroup arith_func_exp
    AFAPI array exp    (const array &in);

    /// C++ Interface for exponential of an array minus 1
    ///
    /// \param[in] in is exponent
    /// \return the exponential of \p in - 1
    ///
    /// \note This function is useful when \p in is small
    /// \ingroup arith_func_expm1
    AFAPI array expm1  (const array &in);

    /// C++ Interface for error function value
    ///
    /// \param[in] in is input
    /// \return the error function value
    ///
    /// \ingroup arith_func_erf
    AFAPI array erf    (const array &in);

    /// C++ Interface for complementary error function value
    ///
    /// \param[in] in is input
    /// \return the complementary error function value
    ///
    /// \ingroup arith_func_erfc
    AFAPI array erfc   (const array &in);

    /// C++ Interface for natural logarithm
    ///
    /// \param[in] in is input
    /// \return the natural logarithm of input
    ///
    /// \ingroup arith_func_log
    AFAPI array log    (const array &in);

    /// C++ Interface for natural logarithm of 1 + input
    ///
    /// \param[in] in is input
    /// \return the natural logarithm of (1 + input)
    ///
    /// \note This function is useful when \p is small
    /// \ingroup arith_func_log1p
    AFAPI array log1p  (const array &in);

    /// C++ Interface for logarithm base 10
    ///
    /// \param[in] in is input
    /// \return the logarithm of input in base 10
    ///
    /// \ingroup arith_func_log10
    AFAPI array log10  (const array &in);

    /// C++ Interface for logarithm base 2
    ///
    /// \param[in] in is input
    /// \return the logarithm of input in base 2
    ///
    /// \ingroup explog_func_log2
    AFAPI array log2   (const array &in);

    /// C++ Interface for square root of input
    ///
    /// \param[in] in is input
    /// \return the square root of input
    ///
    /// \ingroup arith_func_sqrt
    AFAPI array sqrt   (const array &in);

    /// C++ Interface for cube root of input
    ///
    /// \param[in] in is input
    /// \return the cube root of input
    ///
    /// \ingroup arith_func_cbrt
    AFAPI array cbrt   (const array &in);

    ///
    /// C++ Interface for factorial of input
    ///
    /// \param[in] in is input
    /// \return the factorial function of input
    ///
    /// \ingroup arith_func_factorial
    AFAPI array factorial (const array &in);

    /// C++ Interface for gamma function of input
    ///
    /// \param[in] in is input
    /// \return the gamma function of input
    ///
    /// \ingroup arith_func_tgamma
    AFAPI array tgamma (const array &in);

    /// C++ Interface for logarithm of absolute value of gamma function of input
    ///
    /// \param[in] in is input
    /// \return the logarithm of absolute value of gamma function of input
    ///
    /// \ingroup arith_func_tgamma
    AFAPI array lgamma (const array &in);

    /// C++ Interface for checking if values are zero
    ///
    /// \param[in] in is input
    /// \return array containing 1's where input is 0, and 0 otherwise.
    ///
    /// \ingroup arith_func_iszero
    AFAPI array iszero (const array &in);

    /// C++ Interface for checking if values are Infinities
    ///
    /// \param[in] in is input
    /// \return array containing 1's where input is Inf or -Inf, and 0 otherwise.
    ///
    /// \ingroup arith_func_isinf
    AFAPI array isInf  (const array &in);

    /// C++ Interface for checking if values are NaNs
    ///
    /// \param[in] in is input
    /// \return array containing 1's where input is NaN, and 0 otherwise.
    ///
    /// \ingroup arith_func_isnan
    AFAPI array isNaN  (const array &in);
}
#endif

#ifdef __cplusplus
extern "C" {
#endif

    /**
       C Interface for adding arrays

       \param[out] out will contain sum of \p lhs and \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_add
    */
    AFAPI af_err af_add   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for subtracting an array from another

       \param[out] out will contain result of \p lhs - \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_sub
    */
    AFAPI af_err af_sub   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for multiplying two arrays

       \param[out] out will contain the product of \p lhs and  \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_mul
    */
    AFAPI af_err af_mul   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for dividing an array by another

       \param[out] out will contain result of \p lhs / \p rhs.
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_div
    */
    AFAPI af_err af_div   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is less than another

       \param[out] out will contain result of \p lhs < \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup logic_func_lt
    */
    AFAPI af_err af_lt    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is greater than another

       \param[out] out will contain result of \p lhs > \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_gt
    */
    AFAPI af_err af_gt    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is less or equal to another

       \param[out] out will contain result of \p lhs <= \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_le
    */
    AFAPI af_err af_le    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is greater or equal to another

       \param[out] out will contain result of \p lhs >= \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_ge
    */
    AFAPI af_err af_ge    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is equal to another

       \param[out] out will contain result of \p lhs == \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_eq
    */
    AFAPI af_err af_eq    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for checking if an array is not equal to another

       \param[out] out will contain result of \p lhs != \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_neq
    */
    AFAPI af_err af_neq   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for performing logical and on two arrays

       \param[out] out will contain result of \p lhs && \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_and
    */
    AFAPI af_err af_and   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for performing logical or on two arrays

       \param[out] out will contain result of \p lhs || \p rhs. out is of type b8
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_or
    */
    AFAPI af_err af_or    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for performing logical not on input

       \param[out] out will contain result of logical not of \p in. out is of type b8
       \param[in] in is the input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_not
    */
    AFAPI af_err af_not   (af_array *out, const af_array in);

    /**
       C Interface for performing bitwise and on two arrays

       \param[out] out will contain result of \p lhs & \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_bitand
    */
    AFAPI af_err af_bitand   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for performing bitwise or on two arrays

       \param[out] out will contain result of \p lhs & \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_bitor
    */
    AFAPI af_err af_bitor    (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for performing bitwise xor on two arrays

       \param[out] out will contain result of \p lhs ^ \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_bitxor
    */
    AFAPI af_err af_bitxor   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for left shift on integer arrays

       \param[out] out will contain result of the left shift
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_shiftl
    */
    AFAPI af_err af_bitshiftl(af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for right shift on integer arrays

       \param[out] out will contain result of the right shift
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_shiftr
    */
    AFAPI af_err af_bitshiftr(af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for casting an array from one type to another

       \param[out] out will contain the values in the specified type
       \param[in] in is the input
       \param[in] type is the target data type \ref af_dtype
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cast
    */
    AFAPI af_err af_cast    (af_array *out, const af_array in, const af_dtype type);

    /**
       C Interface for min of two arrays

       \param[out] out will contain minimum of \p lhs and \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_min
    */
    AFAPI af_err af_minof (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for max of two arrays

       \param[out] out will contain maximum of \p lhs and \p rhs
       \param[in] lhs first input
       \param[in] rhs second input
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_max
    */
    AFAPI af_err af_maxof (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for remainder

       \param[out] out will contain the remainder of \p lhs divided by \p rhs
       \param[in] lhs is numerator
       \param[in] rhs is denominator
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_rem
    */
    AFAPI af_err af_rem   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for modulus

       \param[out] out will contain the output of \p lhs modulo \p rhs
       \param[in] lhs is dividend
       \param[in] rhs is divisor
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_mod
    */
    AFAPI af_err af_mod   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for absolute value

       \param[out] out will contain the absolute value of \p in
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_abs
    */
    AFAPI af_err af_abs     (af_array *out, const af_array in);

    /**
       C Interface for finding the phase

       \param[out] out will the phase of \p in
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_arg
    */
    AFAPI af_err af_arg     (af_array *out, const af_array in);

    /**
       C Interface for finding the sign of the input

       \param[out] out will contain the sign of each element of the input arrays
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \note output is 1 for negative numbers and 0 for positive numbers

       \ingroup arith_func_round
    */
    AFAPI af_err af_sign   (af_array *out, const af_array in);

    /**
       C Interface for rounding an array of numbers

       \param[out] out will contain values rounded to nearest integer
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \note The values are rounded to nearest integer

       \ingroup arith_func_round
    */
    AFAPI af_err af_round   (af_array *out, const af_array in);

    /**
       C Interface for truncating an array of numbers

       \param[out] out will contain values truncated to nearest integer not greater than input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_trunc
    */
    AFAPI af_err af_trunc   (af_array *out, const af_array in);

    /**
       C Interface for flooring an array of numbers

       \param[out] out will contain values rounded to nearest integer less than or equal to in
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_floor
    */
    AFAPI af_err af_floor   (af_array *out, const af_array in);

    /**
       C Interface for ceiling an array of numbers

       \param[out] out will contain values rounded to nearest integer greater than or equal to in
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_ceil
    */
    AFAPI af_err af_ceil    (af_array *out, const af_array in);

    /**
       C Interface for getting length of hypotenuse of two arrays

       \param[out] out will contain the length of the hypotenuse
       \param[in] lhs is the length of first side
       \param[in] rhs is the length of second side
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_floor
    */
    AFAPI af_err af_hypot (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for sin

       \param[out] out will contain sin of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_sin
    */
    AFAPI af_err af_sin     (af_array *out, const af_array in);

    /**
       C Interface for cos

       \param[out] out will contain cos of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cos
    */
    AFAPI af_err af_cos     (af_array *out, const af_array in);

    /**
       C Interface for tan

       \param[out] out will contain tan of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_tan
    */
    AFAPI af_err af_tan     (af_array *out, const af_array in);

    /**
       C Interface for arc sin

       \param[out] out will contain arc sin of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_asin
    */
    AFAPI af_err af_asin    (af_array *out, const af_array in);

    /**
       C Interface for arc cos

       \param[out] out will contain arc cos of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_acos
    */
    AFAPI af_err af_acos    (af_array *out, const af_array in);

    /**
       C Interface for arc tan

       \param[out] out will contain arc tan of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_atan
    */
    AFAPI af_err af_atan    (af_array *out, const af_array in);

    /**
       C Interface for arc tan of two inputs

       \param[out] out will arc tan of the inputs
       \param[in] lhs value of numerator
       \param[in] rhs value of denominator
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_atan
    */
    AFAPI af_err af_atan2 (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for creating complex array from two input arrays

       \param[out] out will contain the complex array generated from inputs
       \param[in] lhs is real array
       \param[in] rhs is imaginary array
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cplx
    */
    AFAPI af_err af_cplx2 (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for creating complex array from real array

       \param[out] out will contain complex array created from real input \p in
       \param[in] in is real array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cplx
    */
    AFAPI af_err af_cplx    (af_array *out, const af_array in);

    /**
       C Interface for getting real part from complex array

       \param[out] out will contain the real part of \p in
       \param[in] in is complex array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_real
    */
    AFAPI af_err af_real    (af_array *out, const af_array in);

    /**
       C Interface for getting imaginary part from complex array

       \param[out] out will contain the imaginary part of \p in
       \param[in] in is complex array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_imag
    */
    AFAPI af_err af_imag    (af_array *out, const af_array in);

    /**
       C Interface for getting the complex conjugate of input array

       \param[out] out will contain the complex conjugate of \p in
       \param[in] in is complex array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_conjg
    */
    AFAPI af_err af_conjg   (af_array *out, const af_array in);

    /**
       C Interface for sinh

       \param[out] out will contain sinh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_sinh
    */
    AFAPI af_err af_sinh    (af_array *out, const af_array in);

    /**
       C Interface for cosh

       \param[out] out will contain cosh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cosh
    */
    AFAPI af_err af_cosh    (af_array *out, const af_array in);

    /**
       C Interface for tanh

       \param[out] out will contain tanh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_tanh
    */
    AFAPI af_err af_tanh    (af_array *out, const af_array in);

    /**
       C Interface for asinh

       \param[out] out will contain inverse sinh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_asinh
    */
    AFAPI af_err af_asinh   (af_array *out, const af_array in);

    /**
       C Interface for acosh

       \param[out] out will contain inverse cosh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_acosh
    */
    AFAPI af_err af_acosh   (af_array *out, const af_array in);

    /**
       C Interface for atanh

       \param[out] out will contain inverse tanh of input
       \param[in] in is input array
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_atanh
    */
    AFAPI af_err af_atanh   (af_array *out, const af_array in);

    /**
       C Interface for root

       \param[out] out will contain \p lhs th root of \p rhs
       \param[in] lhs is nth root
       \param[in] rhs is value
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_root
    */
    AFAPI af_err af_root   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);


    /**
       C Interface for power

       \param[out] out will contain \p lhs raised to power \p rhs
       \param[in] lhs is base
       \param[in] rhs is exponent
       \param[in] batch specifies if operations need to be performed in batch mode
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_pow
    */
    AFAPI af_err af_pow   (af_array *out, const af_array lhs, const af_array rhs, const bool batch);

    /**
       C Interface for power of two

       \param[out] out will contain the values of 2 to the power \p in
       \param[in] in is exponent
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_pow2
    */
    AFAPI af_err af_pow2     (af_array *out, const af_array in);

    /**
       C Interface for exponential of an array

       \param[out] out will contain the exponential of \p in
       \param[in] in is exponent
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_exp
    */
    AFAPI af_err af_exp     (af_array *out, const af_array in);

#if AF_API_VERSION >= 31
    /**
       C Interface for calculating sigmoid function of an array

       \param[out] out will contain the sigmoid of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_sigmoid
    */
    AFAPI af_err af_sigmoid (af_array *out, const af_array in);
#endif

    /**
       C Interface for exponential of an array minus 1

       \param[out] out will contain the exponential of \p in - 1
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_expm1
    */
    AFAPI af_err af_expm1   (af_array *out, const af_array in);

    /**
       C Interface for error function value

       \param[out] out will contain the error function value of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_erf
    */
    AFAPI af_err af_erf     (af_array *out, const af_array in);

    /**
       C Interface for complementary error function value

       \param[out] out will contain the complementary error function value of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_erfc
    */
    AFAPI af_err af_erfc    (af_array *out, const af_array in);

    /**
       C Interface for natural logarithm

       \param[out] out will contain the natural logarithm of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_log
    */
    AFAPI af_err af_log     (af_array *out, const af_array in);

    /**
       C Interface for logarithm of (in + 1)

       \param[out] out will contain the logarithm of of (in + 1)
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_log1p
    */
    AFAPI af_err af_log1p   (af_array *out, const af_array in);

    /**
       C Interface for logarithm base 10

       \param[out] out will contain the base 10 logarithm of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_log10
    */
    AFAPI af_err af_log10   (af_array *out, const af_array in);

    /**
       C Interface for logarithm base 2

       \param[out] out will contain the base 2 logarithm of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup explog_func_log2
    */
    AFAPI af_err af_log2   (af_array *out, const af_array in);

    /**
       C Interface for square root

       \param[out] out will contain the square root of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_sqrt
    */
    AFAPI af_err af_sqrt    (af_array *out, const af_array in);

    /**
       C Interface for cube root

       \param[out] out will contain the cube root of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_cbrt
    */
    AFAPI af_err af_cbrt    (af_array *out, const af_array in);

    /**
       C Interface for the factorial

       \param[out] out will contain the result of factorial of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_factorial
    */
    AFAPI af_err af_factorial   (af_array *out, const af_array in);

    /**
       C Interface for the gamma function

       \param[out] out will contain the result of gamma function of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_tgamma
    */
    AFAPI af_err af_tgamma   (af_array *out, const af_array in);

    /**
       C Interface for the logarithm of absolute values of gamma function

       \param[out] out will contain the result of logarithm of absolute values of gamma function of \p in
       \param[in] in is input
       \return \ref AF_SUCCESS if the execution completes properly

       \ingroup arith_func_lgamma
    */
    AFAPI af_err af_lgamma   (af_array *out, const af_array in);

    /**
        C Interface for checking if values are zero

        \param[out] out will contain 1's where input is 0, and 0 otherwise.
        \param[in] in is input
        \return \ref AF_SUCCESS if the execution completes properly

        \ingroup arith_func_iszero
    */
    AFAPI af_err af_iszero  (af_array *out, const af_array in);

    /**
        C Interface for checking if values are infinities

        \param[out] out will contain 1's where input is Inf or -Inf, and 0 otherwise.
        \param[in] in is input
        \return \ref AF_SUCCESS if the execution completes properly

        \ingroup arith_func_isinf
    */
    AFAPI af_err af_isinf   (af_array *out, const af_array in);

    /**
        C Interface for checking if values are NaNs

        \param[out] out will contain 1's where input is NaN, and 0 otherwise.
        \param[in] in is input
        \return \ref AF_SUCCESS if the execution completes properly

        \ingroup arith_func_isnan
    */
    AFAPI af_err af_isnan   (af_array *out, const af_array in);

#ifdef __cplusplus
}
#endif