This file is indexed.

/usr/include/af/array.h is in libarrayfire-dev 3.3.2+dfsg1-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#pragma once
#include <af/defines.h>
#include <af/seq.h>
#include <af/util.h>
#include <af/index.h>

#ifdef __cplusplus
#include <af/traits.hpp>
#include <vector>
namespace af
{

    class dim4;

    ///
    /// \brief A multi dimensional data container
    ///
    class AFAPI array {
        af_array   arr;


    public:
        ///
        /// \brief Updates the internal \ref af_array object
        ///
        /// \note This function will reduce the reference of the previous
        ///       \ref af_array object
        ///
        void set(af_array tmp);

        ///
        /// \brief Intermediate data class. Used for assignment and indexing.
        ///
        /// \note This class is for internal book keeping while indexing. This class is not intended for use in user code.
        ///
        class AFAPI array_proxy
        {
            struct array_proxy_impl;    //forward declaration
            array_proxy_impl *impl;     // implementation

        public:
            array_proxy(array& par, af_index_t *ssss, bool linear = false);
            array_proxy(const array_proxy &other);
#if __cplusplus > 199711L
            array_proxy(array_proxy &&other);
            array_proxy & operator=(array_proxy &&other);
#endif
            ~array_proxy();

            // Implicit conversion operators
            operator array() const;
            operator array();

#define ASSIGN(OP)                                                  \
            array_proxy& operator OP(const array_proxy &a);         \
            array_proxy& operator OP(const array &a);               \
            array_proxy& operator OP(const double &a);              \
            array_proxy& operator OP(const cdouble &a);             \
            array_proxy& operator OP(const cfloat &a);              \
            array_proxy& operator OP(const float &a);               \
            array_proxy& operator OP(const int &a);                 \
            array_proxy& operator OP(const unsigned &a);            \
            array_proxy& operator OP(const bool &a);                \
            array_proxy& operator OP(const char &a);                \
            array_proxy& operator OP(const unsigned char &a);       \
            array_proxy& operator OP(const long  &a);               \
            array_proxy& operator OP(const unsigned long &a);       \
            array_proxy& operator OP(const long long  &a);          \
            array_proxy& operator OP(const unsigned long long &a);  \

            ASSIGN(=)
            ASSIGN(+=)
            ASSIGN(-=)
            ASSIGN(*=)
            ASSIGN(/=)
#undef ASSIGN

#if AF_API_VERSION >= 32
#define ASSIGN(OP)                                                  \
            array_proxy& operator OP(const short &a);               \
            array_proxy& operator OP(const unsigned short &a);      \

            ASSIGN(=)
            ASSIGN(+=)
            ASSIGN(-=)
            ASSIGN(*=)
            ASSIGN(/=)
#undef ASSIGN
#endif

            // af::array member functions. same behavior as those below
            af_array get();
            af_array get() const;
            dim_t elements() const;
            template<typename T> T* host() const;
            void host(void *ptr) const;
            dtype type() const;
            dim4 dims() const;
            dim_t dims(unsigned dim) const;
            unsigned numdims() const;
            size_t bytes() const;
            array copy() const;
            bool isempty() const;
            bool isscalar() const;
            bool isvector() const;
            bool isrow() const;
            bool iscolumn() const;
            bool iscomplex() const;
            inline bool isreal() const { return !iscomplex(); }
            bool isdouble() const;
            bool issingle() const;
            bool isrealfloating() const;
            bool isfloating() const;
            bool isinteger() const;
            bool isbool() const;
            void eval() const;
            array as(dtype type) const;
            array T() const;
            array H() const;
            template<typename T> T scalar() const;
            template<typename T> T* device() const;
            void unlock() const;
#if AF_API_VERSION >= 31
            void lock() const;
#endif

                  array::array_proxy row(int index);
            const array::array_proxy row(int index) const;

                  array::array_proxy rows(int first, int last);
            const array::array_proxy rows(int first, int last) const;

                  array::array_proxy col(int index);
            const array::array_proxy col(int index) const;
                  array::array_proxy cols(int first, int last);
            const array::array_proxy cols(int first, int last) const;

                  array::array_proxy slice(int index);
            const array::array_proxy slice(int index) const;

                  array::array_proxy slices(int first, int last);
            const array::array_proxy slices(int first, int last) const;
        };

        //array(af_array in, const array *par, af_index_t seqs[4]);
        /**
            \ingroup construct_mat
            @{
        */
        /**
            Create undimensioned array (no data, undefined size)

            \code
            array A, B, C;   // creates three arrays called A, B and C
            \endcode
        */
        array();

        /**
            Creates an array from an \ref af_array handle
            \param handle the af_array object.
         */
        explicit
        array(const af_array handle);

        /**
            Creates a copy to the \p in array.

            \param in The input \ref array
         */
        array(const array& in);

        /**
            Allocate a one-dimensional array of a specified size with undefined
            contents

            Declare a two-dimensional array by passing the
            number of rows and the number of columns as the first two parameters.
            The (optional) second parameter is the type of the array. The default
            type is f32 or 4-byte single-precision floating-point numbers.

            \code
            // allocate space for an array with 10 rows
            array A(10);          // type is the default f32

            // allocate space for a column vector with 100 rows
            array A(100, f64);    // f64 = double precision
            \endcode

            \param[in] dim0 number of columns in the array
            \param[in] ty   optional label describing the data type
                       (default is f32)

        */
        array(dim_t dim0, dtype ty = f32);

        /**
            Allocate a two-dimensional array of a specified size with undefined
            contents

            Declare a two-dimensional array by passing the
            number of rows and the number of columns as the first two parameters.
            The (optional) third parameter is the type of the array. The default
            type is f32 or 4-byte single-precision floating-point numbers.

            \code
            // allocate space for an array with 10 rows and 8 columns
            array A(10, 8);          // type is the default f32

            // allocate space for a column vector with 100 rows (and 1 column)
            array A(100, 1, f64);    // f64 = double precision
            \endcode

            \param[in] dim0 number of columns in the array
            \param[in] dim1 number of rows in the array
            \param[in] ty optional label describing the data type
                       (default is f32)

        */
        array(dim_t dim0, dim_t dim1, dtype ty = f32);

        /**
            Allocate a three-dimensional (3D) array of a specified size with
            undefined contents

            This is useful to quickly declare a three-dimensional array by
            passing the size as the first three parameters. The (optional)
            fourth parameter is the type of the array. The default type is f32
            or 4-byte single-precision floating point numbers.

            \code
            // allocate space for a 10 x 10 x 10 array
            array A(10, 10, 10);          // type is the default f32

            // allocate space for a 3D, double precision array
            array A(10, 10, 10, f64);     // f64 = double precision
            \endcode

            \param[in] dim0 first dimension of the array
            \param[in] dim1 second dimension of the array
            \param[in] dim2 third dimension of the array
            \param[in] ty optional label describing the data type
                       (default is f32)

        */
        array(dim_t dim0, dim_t dim1, dim_t dim2, dtype ty = f32);

        /**
            Allocate a four-dimensional (4D) array of a specified size with
            undefined contents

            This is useful to quickly declare a four-dimensional array by
            passing the size as the first four parameters. The (optional) fifth
            parameter is the type of the array. The default type is f32 or
            4-byte floating point numbers.

            \code
            // allocate space for a 10 x 10 x 10 x 20 array
            array A(10, 10, 10, 20);          // type is the default f32

            // allocate space for a 4D, double precision array
            array A(10, 10, 10, 20, f64);     // f64 = double precision
            \endcode

            \param[in] dim0 first dimension of the array
            \param[in] dim1 second dimension of the array
            \param[in] dim2 third dimension of the array
            \param[in] dim3 fourth dimension of the array
            \param[in] ty optional label describing the data type
                       (default is f32)

        */
        array(dim_t dim0, dim_t dim1, dim_t dim2, dim_t dim3, dtype ty = f32);

        /**
            Allocate an array of a specified size with undefined contents

            This can be useful when the dimensions of the array are calculated
            somewhere else within the code. The first parameter specifies the
            size of the array via dim4(). The second parameter is the type of
            the array. The default type is f32 or 4-byte
            single-precision floating point numbers.

            \code

            // create a two-dimensional 10 x 10 array
            dim4 dims(10, 10);       // converted to (10, 10, 1, 1)
            array a1(dims);          // create the array (type is f32, the default)

            // create a three-dimensional 10 x 10 x 20 array
            dim4 dims(10, 10, 20);   // converted to (10, 10, 20, 1)
            array a2(dims,f64);      // f64 = double precision

            \endcode

            \param[in] dims size of the array
            \param[in] ty optional label describing the data type
                       (default is f32)
        */
        explicit
        array(const dim4& dims, dtype ty = f32);

        /**
            Create a column vector on the device using a host/device pointer

            \param[in] dim0     number of elements in the column vector
            \param[in] pointer  pointer (points to a buffer on the host/device)
            \param[in] src      source of the data (default is afHost, can also
                                be afDevice)

            \code
            // allocate data on the host
            int h_buffer[] = {23, 34, 18, 99, 34};

            array A(4, h_buffer);   // copy host data to device
                                    //
                                    // A = 23
                                    //   = 34
                                    //   = 18
                                    //   = 99

            \endcode

            \note If \p src is \ref afHost, the first \p dim0 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer.

        */
        template<typename T>
        array(dim_t dim0,
              const T *pointer, af::source src=afHost);


        /**
            Create a 2D array on the device using a host/device pointer

            \param[in] dim0     number of rows
            \param[in] dim1     number of columns
            \param[in] pointer  pointer (points to a buffer on the host/device)
            \param[in] src      source of the data (default is afHost, can also
                                be \ref afDevice)

            \code
            int h_buffer[] = {0, 1, 2, 3, 4, 5};  // host array
            array A(2, 3, h_buffer);              // copy host data to device
            \endcode

            \image html 2dArray.png

            \note If \p src is \ref afHost, the first \p dim0 * \p dim1 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.
        */
        template<typename T>
        array(dim_t dim0, dim_t dim1,
              const T *pointer, af::source src=afHost);


        /**
            Create a 3D array on the device using a host/device pointer

            \param[in] dim0     first dimension
            \param[in] dim1     second dimension
            \param[in] dim2     third dimension
            \param[in] pointer  pointer (points to a buffer on the host/device)
            \param[in] src      source of the data (default is \ref afHost, can
                                also be \ref afDevice)

            \code
            int h_buffer[] = {0, 1, 2, 3, 4, 5, 6, 7, 8
                              9, 0, 1, 2, 3, 4, 5, 6, 7};   // host array

            array A(3, 3, 2,  h_buffer);   // copy host data to 3D device array
            \endcode

            \note If \p src is \ref afHost, the first \p dim0 * \p dim1 * \p dim2 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.

            \image html 3dArray.png
        */
        template<typename T>
        array(dim_t dim0, dim_t dim1, dim_t dim2,
              const T *pointer, af::source src=afHost);


        /**
            Create a 4D array on the device using a host/device pointer

            \param[in] dim0     first dimension
            \param[in] dim1     second dimension
            \param[in] dim2     third dimension
            \param[in] dim3     fourth dimension
            \param[in] pointer  pointer (points to a buffer on the host/device)
            \param[in] src      source of the data (default is afHost, can also
                                be \ref afDevice)

            \code
            int h_buffer[] = {0, 1, 2, 3,
                              4, 5, 6, 7,
                              8, 9, 0, 1,
                              2, 3, 4, 5};   // host array with 16 elements

            array A(2, 2, 2, 2, h_buffer);   // copy host data to 4D device array
            \endcode

            \note If \p src is \ref afHost, the first \p dim0 * \p dim1 * \p dim2 * \p dim3 elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.
        */
        template<typename T>
        array(dim_t dim0, dim_t dim1, dim_t dim2, dim_t dim3,
              const T *pointer, af::source src=afHost);

        /**
            Create an array of specified size on the device using a host/device
            pointer

            This function copies data from the location specified by the
            pointer to a 1D/2D/3D/4D array on the device. The data is arranged
            in "column-major" format (similar to that used by FORTRAN).

            \param[in] dims    vector data type containing the dimension of the
                               \ref array
            \param[in] pointer pointer (points to a buffer on the host/device)
            \param[in] src     source of the data (default is afHost, can also
                                be \ref afDevice)

            \code
            int h_buffer[] = {0, 1, 2, 3,    // host array with 16 elements
                              4, 5, 6, 7,    // written in "row-major" format
                              8, 9, 0, 1,
                              2, 3, 4, 5};

            dim4 dims(4, 4);

            array A(dims, h_buffer);         // A  =  0  4  8  2
                                             //       1  5  9  3
                                             //       2  6  0  4
                                             //       3  7  1  5

                                             // Note the "column-major" ordering
                                             // used in ArrayFire
            \endcode

            \note If \p src is \ref afHost, the first dims.elements() elements are copied. If \p src is \ref afDevice, no copy is done; the array object just wraps the device pointer. The data is treated as column major format when performing linear algebra operations.
        */
        template<typename T>
        explicit
        array(const dim4& dims,
              const T *pointer, af::source src=afHost);

        /**
           Adjust the dimensions of an N-D array (fast).

           This operation simply rearranges the description of the array.
           No memory transfers or transformations are  performed. The total
           number of elements must not change.

           \code
           float f[] = {1,2,3,4};
           array a(2,2,f);
           //a=[1 3]
           //  [2 4]

           array b = array(a, dim4(4));
           //b=[1]
           //  [2]
           //  [3]
           //  [4]

           array c = array(a, b.T().dims() );
           //c=[1 2 3 4]
           \endcode

           \param[in] input
           \param[in] dims total number of elements must not change.
           \return same underlying array data with different dimensions
        */
        array(const array& input, const dim4& dims);

        /**
           Adjust the dimensions of an N-D array (fast).

           This operation simply rearranges the description of the array.
           No memory transfers or transformations are  performed. The total
           number of elements must not change.

           \code

           float f[] = {1,2,3,4};
           array a(2,2,f);
           //a=[1 3]
           //  [2 4]

           array b = array(a, 4);
           //b=[1]
           //  [2]
           //  [3]
           //  [4]

           array c = array(a, 1, 4);
           //c=[1 2 3 4]
           \endcode

           \param[in] input
           \param[in] dim0 first dimension
           \param[in] dim1 second dimension
           \param[in] dim2 third dimension
           \param[in] dim3 fourth dimension
           \return same underlying array data with different dimensions
        */
        array(  const array& input,
                const dim_t dim0, const dim_t dim1 = 1,
                const dim_t dim2 = 1, const dim_t dim3 = 1);

        /**
            @}
        */

        /**
           \ingroup method_mat
           @{
        */

        /**
           get the \ref af_array handle
        */
        af_array get();

        /**
           get the \ref af_array handle
        */
        af_array get() const;

        /**
           get the number of elements in array
        */
        dim_t elements() const;

        /**
           Copy array data to host and return host pointer
        */
        template<typename T> T* host() const;

        /**
           Copy array data to existing host pointer
        */
        void host(void *ptr) const;

        /**
           Perform deep copy from host/device pointer to an existing array
        */
        template<typename T> void write(const T *ptr, const size_t bytes, af::source src = afHost);

        /**
           Get array data type
        */
        dtype type() const;

        /**
           Get dimensions of the array
        */
        dim4 dims() const;

        /**
           Get dimensions of the array
        */
        dim_t dims(unsigned dim) const;

        /**
           Get the number of dimensions of the array
        */
        unsigned numdims() const;

        /**
           Get the size of the array in bytes
        */
        size_t bytes() const;

        /**
           Perform deep copy of the array
        */
        array copy() const;

        /**
           \brief Returns true of the array is empty
         */
        bool isempty() const;

        /**
           \brief Returns true of the array contains only one value
         */
        bool isscalar() const;

        /**
           \brief Returns true if only one of the array dimensions has more than one element
        */
        bool isvector() const;

        /**
           \brief Returns true if only the second dimension has more than one element
        */
        bool isrow() const;

        /**
           \brief Returns true if only the first dimension has more than one element
        */
        bool iscolumn() const;

        /**
           \brief Returns true if the array type is \ref c32 or \ref c64
        */
        bool iscomplex() const;

        /**
           \brief Returns true if the array type is neither \ref c32 nor \ref c64
        */
        inline bool isreal() const { return !iscomplex(); }

        /**
           \brief Returns true if the array type is \ref f64 or \ref c64
        */
        bool isdouble() const;

        /**
           \brief Returns true if the array type is neither \ref f64 nor \ref c64
        */
        bool issingle() const;

        /**
           \brief Returns true if the array type is \ref f32 or \ref f64
        */
        bool isrealfloating() const;

        /**
           \brief Returns true if the array type is \ref f32, \ref f64, \ref c32 or \ref c64
        */
        bool isfloating() const;

        /**
           \brief Returns true if the array type is \ref u8, \ref b8, \ref s32 \ref u32, \ref s64, \ref u64, \ref s16, \ref u16
        */
        bool isinteger() const;

        /**
           \brief Returns true if the array type is \ref b8
        */
        bool isbool() const;

        /**
           \brief Evaluate any JIT expressions to generate data for the array
        */
        void eval() const;

        /**
           \brief Get the first element of the array as a scalar

           \note This is recommended for use while debugging. Calling this method constantly reduces performance.
        */
        template<typename T> T scalar() const;

        /**
           @}
        */


        /**
           \defgroup device_func_device array::device<T>

           Get the device pointer from the array and lock the buffer in memory manager.
           @{

           The device memory returned by this function is not freed until unlock() is called.

           \ingroup arrayfire_func
           \ingroup device_mat
        */
        template<typename T> T* device() const;
        /**
           @}
        */

        // INDEXING
        // Single arguments

        /**
            \brief This operator returns a reference of the original array at a given coordinate.

            You can pass \ref af::seq, \ref af::array, or an int as it's parameters.
            These references can be used for assignment or returning references
            to \ref af::array objects.

            If the \ref af::array is a multi-dimensional array then this coordinate
            will treated as the data as a linear array.

            \param[in] s0   is sequence of linear indices

            \returns A reference to the array at the given index

            \ingroup array_mem_operator_paren

        */
        array::array_proxy operator()(const index &s0);

        /**
            \copydoc operator()(const index &)

            \ingroup array_mem_operator_paren
        */
        const array::array_proxy operator()(const index &s0) const;


        /**
            \brief This operator returns a reference of the original array at a
            given coordinate.

            You can pass \ref af::seq, \ref af::array, or an int as it's parameters.
            These references can be used for assignment or returning references
            to \ref af::array objects.

            \param[in] s0   is sequence of indices along the first dimension
            \param[in] s1   is sequence of indices along the second dimension
            \param[in] s2   is sequence of indices along the third dimension
            \param[in] s3   is sequence of indices along the fourth dimension

            \returns A reference to the array at the given index

            \ingroup array_mem_operator_paren
        */
        array::array_proxy operator()(const index &s0,
                                      const index &s1,
                                      const index &s2 = span,
                                      const index &s3 = span);

        /**
            \copydoc operator()(const index &, const index &, const index &, const index &)

            \ingroup array_mem_operator_paren
        */
        const array::array_proxy operator()(const index &s0,
                                            const index &s1,
                                            const index &s2 = span,
                                            const index &s3 = span) const;


        /// \ingroup array_mem_row
        /// @{
        ///
        /// \brief Returns a reference to a row
        ///
        /// \copydetails array_mem_row
        ///
        /// \param[in]  index is the index of the row to be returned
        ///
        /// \returns a reference to a row defined by \p index
        ///
              array::array_proxy row(int index);
        const array::array_proxy row(int index) const; ///< \copydoc row

        ///
        /// \brief Returns a reference to sequence of rows
        ///
        /// \copydetails array_mem_row
        ///
        /// \param[in]  first is the index of the row to be returned
        /// \param[in]  last is the index of the row to be returned
        ///
        /// \returns a reference to a set of rows
              array::array_proxy rows(int first, int last);
        const array::array_proxy rows(int first, int last) const; ///< \copydoc rows
        /// @}

        /// \ingroup array_mem_col
        /// @{
        ///
        /// \brief Returns a reference to a col
        ///
        /// \copydetails array_mem_col
        ///
        /// \param[in]  index is the index of the col to be returned
        ///
        /// \returns a reference to a col defined by \p index
        ///
              array::array_proxy col(int index);
        const array::array_proxy col(int index) const; ///< \copydoc col

        ///
        /// \brief Returns a reference to sequence of columns
        ///
        /// \copydetails array_mem_col
        ///
        /// \param[in]  first is the index of the columns to be returned
        /// \param[in]  last is the index of the columns to be returned
        ///
        /// \returns a reference to a set of columns
              array::array_proxy cols(int first, int last);
        const array::array_proxy cols(int first, int last) const; ///< \copydoc cols
        /// @}

        /// \ingroup array_mem_slice
        /// @{
        ///
        /// \brief Returns a reference to a matrix in a volume
        ///
        /// \copydetails array_mem_slice
        ///
        /// \param[in]  index is the index of the slice to be returned
        ///
        /// \returns a reference to a col
        ///
              array::array_proxy slice(int index);
        const array::array_proxy slice(int index) const; ///< \copydoc slice

        /// \brief Returns a reference to a matrix in a volume
        ///
        /// \copydetails array_mem_slice
        ///
        /// \param[in]  first is the index of the slices to be returned
        /// \param[in]  last is the index of the slices to be returned
        ///
        /// \returns a reference to a set of slice
              array::array_proxy slices(int first, int last);
        const array::array_proxy slices(int first, int last) const; ///< \copydoc slices
        /// @}

        /// \brief Converts the array into another type
        ///
        ///  \param[in] type is the desired type(f32, s64, etc.)
        /// \returns an array with the type specified by \p type
        /// \ingroup method_mat
        const array as(dtype type) const;


        ~array();

        /// \brief Get the transposed the array
        ///
        /// \returns Transposed matrix
        /// \ingroup method_mat
        array T() const;
        /// \brief Get the conjugate-transpose of the current array
        ///
        /// \returns conjugate-transpose matrix
        /// \ingroup method_mat
        array H() const;

#define ASSIGN_(OP)                                                                     \
        array& OP(const array &val);                                                    \
        array& OP(const double &val);              /**< \copydoc OP (const array &) */  \
        array& OP(const cdouble &val);             /**< \copydoc OP (const array &) */  \
        array& OP(const cfloat &val);              /**< \copydoc OP (const array &) */  \
        array& OP(const float &val);               /**< \copydoc OP (const array &) */  \
        array& OP(const int &val);                 /**< \copydoc OP (const array &) */  \
        array& OP(const unsigned &val);            /**< \copydoc OP (const array &) */  \
        array& OP(const bool &val);                /**< \copydoc OP (const array &) */  \
        array& OP(const char &val);                /**< \copydoc OP (const array &) */  \
        array& OP(const unsigned char &val);       /**< \copydoc OP (const array &) */  \
        array& OP(const long  &val);               /**< \copydoc OP (const array &) */  \
        array& OP(const unsigned long &val);       /**< \copydoc OP (const array &) */  \
        array& OP(const long long  &val);          /**< \copydoc OP (const array &) */  \
        array& OP(const unsigned long long &val);  /**< \copydoc OP (const array &) */  \

#if AF_API_VERSION >= 32
#define ASSIGN(OP)                                                                      \
        ASSIGN_(OP)                                                                     \
        array& OP(const short  &val);              /**< \copydoc OP (const array &) */  \
        array& OP(const unsigned short &val);      /**< \copydoc OP (const array &) */  \

#else
#define ASSIGN(OP) ASSIGN_(OP)
#endif


        /// \ingroup array_mem_operator_eq
        /// @{
        /// \brief Assignes the value(s) of val to the elements of the array.
        ///
        /// \param[in] val  is the value to be assigned to the /ref af::array
        /// \returns the reference to this
        ///
        /// \note   This is a copy on write operation. The copy only occurs when the
        ///          operator() is used on the left hand side.
        ASSIGN(operator=)
        /// @}

        /// \ingroup array_mem_operator_plus_eq
        /// @{
        /// \brief Adds the value(s) of val to the elements of the array.
        ///
        /// \param[in] val  is the value to be assigned to the /ref af::array
        /// \returns the reference to this
        ///
        /// \note   This is a copy on write operation. The copy only occurs when the
        ///          operator() is used on the left hand side.
        ASSIGN(operator+=)
        /// @}

        /// \ingroup array_mem_operator_minus_eq
        /// @{
        /// \brief Subtracts the value(s) of val to the elements of the array.
        ///
        /// \param[in] val  is the value to be assigned to the /ref af::array
        /// \returns the reference to this
        ///
        /// \note   This is a copy on write operation. The copy only occurs when the
        ///          operator() is used on the left hand side.
        ASSIGN(operator-=)
        /// @}

        /// \ingroup array_mem_operator_multiply_eq
        /// @{
        /// \brief Multiplies the value(s) of val to the elements of the array.
        ///
        /// \param[in] val  is the value to be assigned to the /ref af::array
        /// \returns the reference to this
        ///
        /// \note   This is a copy on write operation. The copy only occurs when the
        ///          operator() is used on the left hand side.
        ASSIGN(operator*=)
        /// @}

        /// \ingroup array_mem_operator_divide_eq
        /// @{
        /// \brief Divides the value(s) of val to the elements of the array.
        ///
        /// \param[in] val  is the value to be assigned to the /ref af::array
        /// \returns the reference to this
        ///
        /// \note   This is a copy on write operation. The copy only occurs when the
        ///          operator() is used on the left hand side.
        /// \ingroup array_mem_operator_divide_eq
        ASSIGN(operator/=)
        /// @}


#undef ASSIGN
#undef ASSIGN_

        ///
        /// \brief Negates the values of the array
        /// \ingroup arith_func_neg
        ///
        /// \returns an \ref array with negated values
        array operator -() const;

        ///
        /// \brief Performs a not operation on the values of the array
        /// \ingroup arith_func_not
        ///
        /// \returns an \ref array with negated values
        array operator !() const;

        ///
        /// \brief Get the count of non-zero elements in the array
        ///
        /// For dense matrix, this is the same as count<int>(arr);
        int nonzeros() const;


        ///
        /// \brief Locks the device buffer in the memory manager.
        ///
        /// This method can be called to take control of the device pointer from the memory manager.
        /// While a buffer is locked, the memory manager doesn't free the memory until unlock() is invoked.
        void lock() const;

        ///
        /// \brief Unlocks the device buffer in the memory manager.
        ///
        /// This method can be called after called after calling \ref array::lock()
        /// Calling this method gives back the control of the device pointer to the memory manager.
        void unlock() const;
    };
    // end of class array

#define BIN_OP_(OP)                                                                                                      \
    AFAPI array OP (const array& lhs, const array& rhs);                                                                 \
    AFAPI array OP (const bool& lhs, const array& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const int& lhs, const array& rhs);                  /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const unsigned& lhs, const array& rhs);             /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const char& lhs, const array& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const unsigned char& lhs, const array& rhs);        /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const long& lhs, const array& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const unsigned long& lhs, const array& rhs);        /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const long long& lhs, const array& rhs);            /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const unsigned long long& lhs, const array& rhs);   /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const double& lhs, const array& rhs);               /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const float& lhs, const array& rhs);                /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const cfloat& lhs, const array& rhs);               /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const cdouble& lhs, const array& rhs);              /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const bool& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const int& rhs);                  /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const unsigned& rhs);             /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const char& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const unsigned char& rhs);        /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const long& rhs);                 /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const unsigned long& rhs);        /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const long long& rhs);            /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const unsigned long long& rhs);   /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const double& rhs);               /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const float& rhs);                /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const cfloat& rhs);               /**< \copydoc OP (const array&, const array&) */ \
    AFAPI array OP (const array& lhs, const cdouble& rhs);              /**< \copydoc OP (const array&, const array&) */ \

#if AF_API_VERSION >= 32
#define BIN_OP(OP)                                                                                                       \
        BIN_OP_(OP)                                                                                                      \
        AFAPI array OP (const short& lhs, const array& rhs);            /**< \copydoc OP (const array&, const array&) */ \
        AFAPI array OP (const unsigned short& lhs, const array& rhs);   /**< \copydoc OP (const array&, const array&) */ \
        AFAPI array OP (const array& lhs, const short& rhs);            /**< \copydoc OP (const array&, const array&) */ \
        AFAPI array OP (const array& lhs, const unsigned short& rhs);   /**< \copydoc OP (const array&, const array&) */ \

#else
#define BIN_OP(OP) BIN_OP_(OP)
#endif

    /// \ingroup arith_func_add
    /// @{
    /// \brief Adds two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns an array which is the sum of the \p lhs and \p rhs
    BIN_OP(operator+ )
    /// @}

    /// \ingroup arith_func_sub
    /// @{
    /// \brief Subtracts two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns an array which is the subtraction of the \p lhs and \p rhs
    BIN_OP(operator- )
    /// @}

    /// \ingroup arith_func_mul
    /// @{
    /// \brief Multiplies two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns an array which is the product of the \p lhs and \p rhs
    BIN_OP(operator* )
    /// @}

    /// \ingroup arith_func_div
    /// @{
    /// \brief Divides two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns an array which is the quotient of the \p lhs and \p rhs
    BIN_OP(operator/ )
    /// @}

    /// \ingroup arith_func_eq
    /// @{
    /// \brief Performs an equality operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns an array of type b8 with the equality operation performed on each element
    BIN_OP(operator==)
    /// @}

    /// \ingroup arith_func_neq
    /// @{
    /// \brief Performs an inequality operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with the != operation performed on each element
    ///             of \p lhs and \p rhs
    BIN_OP(operator!=)
    /// @}

    /// \ingroup arith_func_lt
    /// @{
    /// \brief Performs a lower than operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with the < operation performed on each element
    ///             of \p lhs and \p rhs
    BIN_OP(operator< )
    /// @}

    /// \ingroup arith_func_le
    /// @{
    /// \brief Performs an lower or equal operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with the <= operation performed on each element
    ///             of \p lhs and \p rhs
    BIN_OP(operator<=)
    /// @}

    /// \ingroup arith_func_gt
    /// @{
    /// \brief Performs an greater than operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with the > operation performed on each element
    ///             of \p lhs and \p rhs
    BIN_OP(operator> )
    /// @}

    /// \ingroup arith_func_ge
    /// @{
    /// \brief Performs an greater or equal operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with the >= operation performed on each element
    ///             of \p lhs and \p rhs
    BIN_OP(operator>=)
    /// @}

    /// \ingroup arith_func_and
    /// @{
    /// \brief  Performs a logical AND operation on two arrays or an array and a
    ///         value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with a logical AND operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator&&)
    /// @}

    /// \ingroup arith_func_or
    /// @{
    /// \brief  Performs an logical OR operation on two arrays or an array and a
    ///         value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array of type b8 with a logical OR operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator||)
    /// @}

    /// \ingroup arith_func_mod
    /// @{
    /// \brief Performs an modulo operation on two arrays or an array and a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a modulo operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator% )
    /// @}

    /// \ingroup arith_func_bitand
    /// @{
    /// \brief  Performs an bitwise AND operation on two arrays or an array and
    ///         a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a bitwise AND operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator& )
    /// @}

    /// \ingroup arith_func_bitor
    /// @{
    /// \brief  Performs an bitwise OR operation on two arrays or an array and
    ///         a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a bitwise OR operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator| )
    /// @}

    /// \ingroup arith_func_bitxor
    /// @{
    /// \brief  Performs an bitwise XOR operation on two arrays or an array and
    ///         a value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a bitwise OR operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator^ )
    /// @}

    /// \ingroup arith_func_shiftl
    /// @{
    /// \brief  Performs an left shift operation on two arrays or an array and a
    ///          value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a left shift operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator<<)
    /// @}

    /// \ingroup arith_func_shiftr
    /// @{
    /// \brief  Performs an right shift operation on two arrays or an array and a
    ///          value.
    ///
    /// \param[in] lhs the left hand side value of the operand
    /// \param[in] rhs the right hand side value of the operand
    ///
    /// \returns    an array with a right shift operation performed on each
    ///             element of \p lhs and \p rhs
    BIN_OP(operator>>)
    /// @}

#undef BIN_OP
#undef BIN_OP_

    /// Evaluate an expression (nonblocking).
    /**
       \ingroup method_mat
       @{
    */
    inline array &eval(array &a) { a.eval(); return a; }
    inline void eval(array &a, array &b) { eval(a); b.eval(); }
    inline void eval(array &a, array &b, array &c) { eval(a, b); c.eval(); }
    inline void eval(array &a, array &b, array &c, array &d) { eval(a, b, c); d.eval(); }
    inline void eval(array &a, array &b, array &c, array &d, array &e) { eval(a, b, c, d); e.eval(); }
    inline void eval(array &a, array &b, array &c, array &d, array &e, array &f) { eval(a, b, c, d, e); f.eval(); }
    /**
       @}
    */

}
#endif

#ifdef __cplusplus
extern "C" {
#endif

    /**
       \ingroup construct_mat
       @{
    */

    /**
       Create an \ref af_array handle initialized with user defined data

       This function will create an \ref af_array handle from the memory provided in \p data

       \param[out]  arr The pointer to the returned object.
       \param[in]   data The data which will be loaded into the array
       \param[in]   ndims The number of dimensions read from the \p dims parameter
       \param[in]   dims A C pointer with \p ndims elements. Each value represents the size of that dimension
       \param[in]   type The type of the \ref af_array object

       \returns \ref AF_SUCCESS if the operation was a success
    */
    AFAPI af_err af_create_array(af_array *arr, const void * const data, const unsigned ndims, const dim_t * const dims, const af_dtype type);

    /**
       Create af_array handle

       \param[out]  arr The pointer to the retured object.
       \param[in]   ndims The number of dimensions read from the \p dims parameter
       \param[in]   dims A C pointer with \p ndims elements. Each value represents the size of that dimension
       \param[in]   type The type of the \ref af_array object

       \returns \ref AF_SUCCESS if the operation was a success
    */
    AFAPI af_err af_create_handle(af_array *arr, const unsigned ndims, const dim_t * const dims, const af_dtype type);

    /**
    @}
    */

    /**
       \ingroup method_mat
       @{

       Deep copy an array to another
    */
    AFAPI af_err af_copy_array(af_array *arr, const af_array in);

    /**
       Copy data from a C pointer (host/device) to an existing array.
    */
    AFAPI af_err af_write_array(af_array arr, const void *data, const size_t bytes, af_source src);

    /**
       Copy data from an af_array to a C pointer.

       Needs to used in conjunction with the two functions above
    */
    AFAPI af_err af_get_data_ptr(void *data, const af_array arr);

    /**
       \brief Reduce the reference count of the \ref af_array
    */
    AFAPI af_err af_release_array(af_array arr);

    /**
       Increments an \ref af_array reference count
    */
    AFAPI af_err af_retain_array(af_array *out, const af_array in);

#if AF_API_VERSION >= 31
    /**
       \ingroup method_mat
       @{

       Get the use count of `af_array`
    */
    AFAPI af_err af_get_data_ref_count(int *use_count, const af_array in);
#endif


    /**
       Evaluate any expressions in the Array
    */
    AFAPI af_err af_eval(af_array in);

    /**
      @}
    */

    /**
        \ingroup method_mat
        @{
    */
    /**
        \brief Gets the number of elements in an array.

        \param[out] elems is the output that contains number of elements of \p arr
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_get_elements(dim_t *elems, const af_array arr);

    /**
        \brief Gets the type of an array.

        \param[out] type is the output that contains the type of \p arr
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_get_type(af_dtype *type, const af_array arr);

    /**
        \brief Gets the dimseions of an array.

        \param[out] d0 is the output that contains the size of first dimension of \p arr
        \param[out] d1 is the output that contains the size of second dimension of \p arr
        \param[out] d2 is the output that contains the size of third dimension of \p arr
        \param[out] d3 is the output that contains the size of fourth dimension of \p arr
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_get_dims(dim_t *d0, dim_t *d1, dim_t *d2, dim_t *d3,
                             const af_array arr);

    /**
        \brief Gets the number of dimensions of an array.

        \param[out] result is the output that contains the number of dims of \p arr
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_get_numdims(unsigned *result, const af_array arr);

    /**
        \brief Check if an array is empty.

        \param[out] result is true if elements of arr is 0, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_empty        (bool *result, const af_array arr);

    /**
        \brief Check if an array is scalar, ie. single element.

        \param[out] result is true if elements of arr is 1, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_scalar       (bool *result, const af_array arr);

    /**
        \brief Check if an array is row vector.

        \param[out] result is true if arr has dims [1 x 1 1], false otherwise
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_row          (bool *result, const af_array arr);

    /**
        \brief Check if an array is a column vector

        \param[out] result is true if arr has dims [x 1 1 1], false otherwise
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_column       (bool *result, const af_array arr);

    /**
        \brief Check if an array is a vector

        A vector is any array that has exactly 1 dimension not equal to 1.

        \param[out] result is true if arr is a vector, false otherwise
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_vector       (bool *result, const af_array arr);

    /**
        \brief Check if an array is complex type

        \param[out] result is true if arr is of type \ref c32 or \ref c64, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_complex      (bool *result, const af_array arr);

    /**
        \brief Check if an array is real type

        This is mutually exclusive to \ref af_is_complex

        \param[out] result is true if arr is NOT of type \ref c32 or \ref c64, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_real         (bool *result, const af_array arr);

    /**
        \brief Check if an array is double precision type

        \param[out] result is true if arr is of type \ref f64 or \ref c64, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_double       (bool *result, const af_array arr);

    /**
        \brief Check if an array is single precision type

        \param[out] result is true if arr is of type \ref f32 or \ref c32, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_single       (bool *result, const af_array arr);

    /**
        \brief Check if an array is real floating point type

        \param[out] result is true if arr is of type \ref f32 or \ref f64, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_realfloating (bool *result, const af_array arr);

    /**
        \brief Check if an array is floating precision type

        This is a combination of \ref af_is_realfloating and \ref af_is_complex

        \param[out] result is true if arr is of type \ref f32, \ref f64, \ref c32 or \ref c64, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_floating     (bool *result, const af_array arr);

    /**
        \brief Check if an array is integer type

        \param[out] result is true if arr is of integer types, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_integer      (bool *result, const af_array arr);

    /**
        \brief Check if an array is bool type

        \param[out] result is true if arr is of \ref b8 type, otherwise false
        \param[in] arr is the input array

        \returns error codes
    */
    AFAPI af_err af_is_bool         (bool *result, const af_array arr);
    /**
        @}
    */

#ifdef __cplusplus
}
#endif