This file is indexed.

/usr/include/af/signal.h is in libarrayfire-dev 3.3.2+dfsg1-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
/*******************************************************
 * Copyright (c) 2014, ArrayFire
 * All rights reserved.
 *
 * This file is distributed under 3-clause BSD license.
 * The complete license agreement can be obtained at:
 * http://arrayfire.com/licenses/BSD-3-Clause
 ********************************************************/

#pragma once
#include <af/defines.h>

#ifdef __cplusplus

namespace af
{
class array;
class dim4;

/**
   C++ Interface for data interpolation on one dimensional signals

   \param[in]  in is the input array
   \param[in]  pos array contains the interpolation locations
   \param[in]  method is the interpolation type, it can take one of the values defined by the
               enum \ref af_interp_type
   \param[in]  offGrid is the value that will set in the output array when certain index is out of bounds
   \return     the array with interpolated values

   \ingroup signal_func_approx1
 */
AFAPI array approx1(const array &in, const array &pos,
                    const interpType method = AF_INTERP_LINEAR, const float offGrid = 0.0f);

/**
   C++ Interface for data interpolation on two dimensional signals

   \param[in]  in is the input array
   \param[in]  pos0 array contains the interpolation locations for first dimension
   \param[in]  pos1 array contains the interpolation locations for second dimension
   \param[in]  method is the interpolation type, it can take one of the values defined by the
               enum \ref af_interp_type
   \param[in]  offGrid is the value that will set in the output array when certain index is out of bounds
   \return     the array with interpolated values

   \ingroup signal_func_approx2
 */
AFAPI array approx2(const array &in, const array &pos0, const array &pos1,
                    const interpType method = AF_INTERP_LINEAR, const float offGrid = 0.0f);

/**
   C++ Interface for fast fourier transform on one dimensional signals

   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals - used to either truncate or pad the input signals
   \return     the transformed array

   \ingroup signal_func_fft
 */
AFAPI array fftNorm(const array& in, const double norm_factor, const dim_t odim0=0);

/**
   C++ Interface for fast fourier transform on two dimensional signals

   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \return     the transformed array

   \ingroup signal_func_fft2
 */
AFAPI array fft2Norm(const array& in, const double norm_factor, const dim_t odim0=0, const dim_t odim1=0);

/**
   C++ Interface for fast fourier transform on three dimensional signals

   \param[in]  in is the input array and the output of 1D fourier transform on exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \param[in]  odim2 is the length of output signals along third dimension - used to either truncate/pad the input
   \return     the transformed array

   \ingroup signal_func_fft3
 */
AFAPI array fft3Norm(const array& in, const double norm_factor, const dim_t odim0=0, const dim_t odim1=0, const dim_t odim2=0);

#if AF_API_VERSION >= 31
/**
   C++ Interface for fast fourier transform on one dimensional signals

   \param[inout]  in is the input array on entry and the output of 1D forward fourier transform on exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied

   \note The input \p in must be complex

   \ingroup signal_func_fft
 */
AFAPI void fftInPlace(array& in, const double norm_factor = 1);
#endif

#if AF_API_VERSION >= 31
/**
   C++ Interface for fast fourier transform on two dimensional signals

   \param[inout]  in is the input array on entry and the output of 2D forward fourier transform on exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     the transformed array

   \note The input \p in must be complex

   \ingroup signal_func_fft2
 */
AFAPI void fft2InPlace(array& in, const double norm_factor = 1);
#endif

#if AF_API_VERSION >= 31
/**
   C++ Interface for fast fourier transform on three dimensional signals

   \param[inout]  in is the input array on entry and the output of 3D forward fourier transform on exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     the transformed array

   \note The input \p in must be complex

   \ingroup signal_func_fft3
 */
AFAPI void fft3InPlace(array& in, const double norm_factor = 1);
#endif

/**
   C++ Interface for fast fourier transform on one dimensional signals

   This version of fft function uses a default norm_factor parameter that is calculated internally
   based on the input signals.

   \param[in]  in is the input array
   \param[in]  odim0 is the length of output signals - used to either truncate or pad the input signals
   \return     the transformed array

   \ingroup signal_func_fft
 */
AFAPI array fft(const array& in, const dim_t odim0=0);

/**
   C++ Interface for fast fourier transform on two dimensional signals

   This version of fft function uses a default norm_factor parameter that is calculated internally
   based on the input signals.

   \param[in]  in is the input array
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \return     the transformed array

   \ingroup signal_func_fft2
 */
AFAPI array fft2(const array& in, const dim_t odim0=0, const dim_t odim1=0);

/**
   C++ Interface for fast fourier transform on three dimensional signals

   This version of fft function uses a default norm_factor parameter that is calculated internally
   based on the input signals.

   \param[in]  in is the input array
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \param[in]  odim2 is the length of output signals along third dimension - used to either truncate/pad the input
   \return     the transformed array

   \ingroup signal_func_fft3
 */
AFAPI array fft3(const array& in, const dim_t odim0=0, const dim_t odim1=0, const dim_t odim2=0);

/**
   C++ Interface for fast fourier transform on any(1d, 2d, 3d) dimensional signals

   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  outDims is an object of \ref dim4 that has the output array dimensions - used to either truncate or pad the input signals
   \return     the transformed array

   \ingroup signal_func_fft
 */
AFAPI array dft(const array& in, const double norm_factor, const dim4 outDims);

/**
   C++ Interface for fast fourier transform on any(1d, 2d, 3d) dimensional signals

   This version of fft function uses a default norm_factor parameter that is calculated internally
   based on the input signals.

   \param[in]  in is the input array
   \param[in]  outDims is an object of \ref dim4 that has the output array dimensions - used to either truncate or pad the input signals
   \return     the transformed array

   \ingroup signal_func_fft
 */
AFAPI array dft(const array& in, const dim4 outDims);

/**
   C++ Interface for fast fourier transform on any(1d, 2d, 3d) dimensional signals

   This version of fft function uses a default norm_factor parameter that is calculated internally
   based on the input signals.

   \param[in]  in is the input array
   \return     the transformed array

   \ingroup signal_func_fft
 */
AFAPI array dft(const array& in);

/**
   C++ Interface for inverse fast fourier transform on one dimensional signals

   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals - used to either truncate or pad the input signals
   \return     the transformed array

   \ingroup signal_func_ifft
 */
AFAPI array ifftNorm(const array& in, const double norm_factor, const dim_t odim0=0);

/**
   C++ Interface for inverse fast fourier transform on two dimensional signals

   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \return     the transformed array

   \ingroup signal_func_ifft2
 */
AFAPI array ifft2Norm(const array& in, const double norm_factor, const dim_t odim0=0, const dim_t odim1=0);

/**
   C++ Interface for inverse fast fourier transform on three dimensional signals

   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \param[in]  odim2 is the length of output signals along third dimension - used to either truncate/pad the input
   \return     the transformed array

   \ingroup signal_func_ifft3
 */
AFAPI array ifft3Norm(const array& in, const double norm_factor, const dim_t odim0=0, const dim_t odim1=0, const dim_t odim2=0);

#if AF_API_VERSION >= 31
/**
   C++ Interface for fast fourier transform on one dimensional signals

   \param[inout]  in is the input array on entry and the output of 1D inverse fourier transform on exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied

   \note The input \p in must be complex

   \ingroup signal_func_ifft
 */
AFAPI void ifftInPlace(array& in, const double norm_factor = 1);
#endif

#if AF_API_VERSION >= 31
/**
   C++ Interface for fast fourier transform on two dimensional signals

   \param[inout]  in is the input array on entry and the output of 2D inverse fourier transform on exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     the transformed array

   \note The input \p in must be complex

   \ingroup signal_func_ifft2
 */
AFAPI void ifft2InPlace(array& in, const double norm_factor = 1);
#endif

#if AF_API_VERSION >= 31
/**
   C++ Interface for fast fourier transform on three dimensional signals

   \param[inout]  in is the input array on entry and the output of 3D inverse fourier transform on exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     the transformed array

   \note The input \p in must be complex

   \ingroup signal_func_ifft3
 */
AFAPI void ifft3InPlace(array& in, const double norm_factor = 1);
#endif

/**
   C++ Interface for inverse fast fourier transform on one dimensional signals

   This version of fft function uses a default norm_factor parameter that is calculated internally
   based on the input signals.

   \param[in]  in is the input array
   \param[in]  odim0 is the length of output signals - used to either truncate or pad the input signals
   \return     the transformed array

   \ingroup signal_func_ifft
 */
AFAPI array ifft(const array& in, const dim_t odim0=0);

/**
   C++ Interface for inverse fast fourier transform on two dimensional signals

   This version of fft function uses a default norm_factor parameter that is calculated internally
   based on the input signals.

   \param[in]  in is the input array
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \return     the transformed array

   \ingroup signal_func_ifft2
 */
AFAPI array ifft2(const array& in, const dim_t odim0=0, const dim_t odim1=0);

/**
   C++ Interface for inverse fast fourier transform on three dimensional signals

   This version of fft function uses a default norm_factor parameter that is calculated internally
   based on the input signals.

   \param[in]  in is the input array
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \param[in]  odim2 is the length of output signals along third dimension - used to either truncate/pad the input
   \return     the transformed array

   \ingroup signal_func_ifft3
 */
AFAPI array ifft3(const array& in, const dim_t odim0=0, const dim_t odim1=0, const dim_t odim2=0);

/**
   C++ Interface for inverse fast fourier transform on any(1d, 2d, 3d) dimensional signals

   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  outDims is an object of \ref dim4 that has the output array dimensions - used to either truncate or pad the input signals
   \return     the transformed array

   \ingroup signal_func_fft
 */
AFAPI array idft(const array& in, const double norm_factor, const dim4 outDims);

/**
   C++ Interface for inverse fast fourier transform on any(1d, 2d, 3d) dimensional signals

   This version of fft function uses a default norm_factor parameter that is calculated internally
   based on the input signals.

   \param[in]  in is the input array
   \param[in]  outDims is an object of \ref dim4 that has the output array dimensions - used to either truncate or pad the input signals
   \return     the transformed array

   \ingroup signal_func_fft
 */
AFAPI array idft(const array& in, const dim4 outDims);

/**
   C++ Interface for inverse fast fourier transform on any(1d, 2d, 3d) dimensional signals

   This version of fft function uses a default norm_factor parameter that is calculated internally
   based on the input signals.

   \param[in]  in is the input array
   \return     the transformed array

   \ingroup signal_func_fft
 */
AFAPI array idft(const array& in);

#if AF_API_VERSION >= 31
/**
   C++ Interface for real to complex fast fourier transform for one dimensional signals

   \param[in]  in is a real array
   \param[in]  dims is the requested padded dimensions before the transform is applied
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     a complex array containing the non redundant parts of \p in along the first dimension.

   \note The first dimension of the output will be of size (dims[0] / 2) + 1. The remaining dimensions are unchanged.

   \ingroup signal_func_fft_r2c
*/
template<int rank>
array fftR2C(const array &in,
             const dim4& dims,
             const double norm_factor = 0);
#endif

#if AF_API_VERSION >= 31
/**
   C++ Interface for real to complex fast fourier transform for one dimensional signals

   \param[in]  in is a real array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     a complex array containing the non redundant parts of \p in along the first dimension.

   \note The first dimension of the output will be of size (in.dims(0) / 2) + 1. The remaining dimensions are unchanged.

   \ingroup signal_func_fft_r2c
*/
template<int rank>
array fftR2C(const array &in,
             const double norm_factor = 0);
#endif

#if AF_API_VERSION >= 31
/**
   C++ Interface for complex to real fast fourier transform

   \param[in]  in is a complex array containing only the non redundant parts of the signals
   \param[in]  is_odd is a flag signifying if the output should be even or odd size
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \tparam     rank signifies the dimensionality of the transform
   \return     A real array of size [2 * idim0 - 2 + is_odd, idim1, idim2, idim3] where idim{0,1,2,3} signify input dimensions

   \ingroup signal_func_fft_c2r
*/

template<int rank>
array fftC2R(const array &in, bool is_odd = false,
                 const double norm_factor = 0);
#endif

/**
   C++ Interface for convolution any(one through three) dimensional signals

   Example for convolution on one dimensional signal in one to one batch mode
   \snippet test/convolve.cpp ex_image_convolve_1d

   Example for convolution on two dimensional signal in one to one batch mode
   \snippet test/convolve.cpp ex_image_convolve_2d

   Example for convolution on three dimensional signal in one to one batch mode
   \snippet test/convolve.cpp ex_image_convolve_3d

   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be flipped for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \param[in]  domain specifies if the convolution should be performed in frequency os spatial domain
   \return     the convolved array

   \note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.

   \ingroup signal_func_convolve
 */
AFAPI array convolve(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT, const convDomain domain=AF_CONV_AUTO);

/**
   C++ Interface for separable convolution on two dimensional signals

   \snippet test/convolve.cpp ex_image_conv2_sep

   \param[in]  signal is the input signal
   \param[in]  col_filter is the signal that shall be along coloumns
   \param[in]  row_filter is the signal that shall be along rows
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \return     the convolved array

   \note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.

   \note Separable convolution only supports two(ONE-to-ONE and MANY-to-ONE) batch modes from the ones described in the detailed description section.

   \ingroup signal_func_convolve
 */
AFAPI array convolve(const array& col_filter, const array& row_filter, const array& signal, const convMode mode=AF_CONV_DEFAULT);

/**
   C++ Interface for convolution on one dimensional signals

   \snippet test/convolve.cpp ex_image_convolve1

   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be flipped for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \param[in]  domain specifies if the convolution should be performed in frequency os spatial domain
   \return     the convolved array

   \note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.

   \ingroup signal_func_convolve1
 */
AFAPI array convolve1(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT, const convDomain domain=AF_CONV_AUTO);

/**
   C++ Interface for convolution on two dimensional signals

   \snippet test/convolve.cpp ex_image_convolve2

   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be flipped for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \param[in]  domain specifies if the convolution should be performed in frequency os spatial domain
   \return     the convolved array

   \note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.

   \ingroup signal_func_convolve2
 */
AFAPI array convolve2(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT, const convDomain domain=AF_CONV_AUTO);

/**
   C++ Interface for convolution on three dimensional signals

   \snippet test/convolve.cpp ex_image_convolve3

   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be flipped for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \param[in]  domain specifies if the convolution should be performed in frequency os spatial domain
   \return     the convolved array

   \note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.

   \ingroup signal_func_convolve3
 */
AFAPI array convolve3(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT, const convDomain domain=AF_CONV_AUTO);

/**
   C++ Interface for FFT-based convolution any(one through three) dimensional signals

   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be used for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \return     the convolved array

   \ingroup signal_func_fft_convolve
 */
AFAPI array fftConvolve(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT);

/**
   C++ Interface for convolution on one dimensional signals

   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be used for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \return     the convolved array

   \ingroup signal_func_fft_convolve1
 */
AFAPI array fftConvolve1(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT);

/**
   C++ Interface for convolution on two dimensional signals

   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be used for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \return     the convolved array

   \ingroup signal_func_fft_convolve2
 */
AFAPI array fftConvolve2(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT);

/**
   C++ Interface for convolution on three dimensional signals

   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be used for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \return     the convolved array

   \ingroup signal_func_fftconvolve3
 */
AFAPI array fftConvolve3(const array& signal, const array& filter, const convMode mode=AF_CONV_DEFAULT);

/**
   C++ Interface for finite impulse response  filter

   \param[in] b is the array containing the coefficients of the filter
   \param[in] x is the input signal to the filter
   \returns the output signal from the filter

   \ingroup signal_func_fir
*/
AFAPI array fir(const array &b, const array &x);

/**
   C++ Interface for infinite impulse response filter

   \param[in] b is the array containing the feedforward coefficients
   \param[in] a is the array containing the feedback coefficients
   \param[in] x is the input signal to the filter
   \returns the output signal from the filter

   \note The feedforward coefficients are currently limited to a length of 512

   \ingroup signal_func_iir
*/
AFAPI array iir(const array &b, const array &a, const array &x);

}
#endif

#ifdef __cplusplus
extern "C" {
#endif

/**
   C Interface for signals interpolation on one dimensional signals

   \param[out] out is the array with interpolated values
   \param[in]  in is the input array
   \param[in]  pos array contains the interpolation locations
   \param[in]  method is the interpolation type, it can take one of the values defined by the
               enum \ref af_interp_type
   \param[in]  offGrid is the value that will set in the output array when certain index is out of bounds
   \return     \ref AF_SUCCESS if the interpolation operation is successful,
               otherwise an appropriate error code is returned.

   \ingroup signal_func_approx1
 */
AFAPI af_err af_approx1(af_array *out, const af_array in, const af_array pos,
                        const af_interp_type method, const float offGrid);

/**
   C Interface for signals interpolation on two dimensional signals

   \param[out] out is the array with interpolated values
   \param[in]  in is the input array
   \param[in]  pos0 array contains the interpolation locations for first dimension
   \param[in]  pos1 array contains the interpolation locations for second dimension
   \param[in]  method is the interpolation type, it can take one of the values defined by the
               enum \ref af_interp_type
   \param[in]  offGrid is the value that will set in the output array when certain index is out of bounds
   \return     \ref AF_SUCCESS if the interpolation operation is successful,
               otherwise an appropriate error code is returned.

   \ingroup signal_func_approx2
 */
AFAPI af_err af_approx2(af_array *out, const af_array in, const af_array pos0, const af_array pos1,
                        const af_interp_type method, const float offGrid);

/**
   C Interface for fast fourier transform on one dimensional signals

   \param[out] out is the transformed array
   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals - used to either truncate or pad the input signals
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \ingroup signal_func_fft
 */
AFAPI af_err af_fft(af_array *out, const af_array in, const double norm_factor, const dim_t odim0);

#if AF_API_VERSION >= 31
/**
   C Interface for fast fourier transform on one dimensional signals

   \param[inout]  in is the input array on entry and the output of 1D forward fourier transform at exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \note The input \p in must be a complex array

   \ingroup signal_func_fft
*/
AFAPI af_err af_fft_inplace(af_array in, const double norm_factor);
#endif

/**
   C Interface for fast fourier transform on two dimensional signals

   \param[out] out is the transformed array
   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \ingroup signal_func_fft2
 */
AFAPI af_err af_fft2(af_array *out, const af_array in, const double norm_factor, const dim_t odim0, const dim_t odim1);

#if AF_API_VERSION >= 31
/**
   C Interface for fast fourier transform on two dimensional signals

   \param[inout]  in is the input array on entry and the output of 2D forward fourier transform on exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \note The input \p in must be a complex array

   \ingroup signal_func_fft2
 */
AFAPI af_err af_fft2_inplace(af_array in, const double norm_factor);
#endif

/**
   C Interface for fast fourier transform on three dimensional signals

   \param[out] out is the transformed array
   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \param[in]  odim2 is the length of output signals along third dimension - used to either truncate/pad the input
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \ingroup signal_func_fft3
 */
AFAPI af_err af_fft3(af_array *out, const af_array in, const double norm_factor, const dim_t odim0, const dim_t odim1, const dim_t odim2);

#if AF_API_VERSION >= 31
/**
   C Interface for fast fourier transform on three dimensional signals

   \param[inout]  in is the input array on entry and the output of 3D forward fourier transform on exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \note The input \p must be a complex array

   \ingroup signal_func_fft3
 */
AFAPI af_err af_fft3_inplace(af_array in, const double norm_factor);
#endif

/**
   C Interface for inverse fast fourier transform on one dimensional signals

   \param[out] out is the transformed array
   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals - used to either truncate or pad the input signals
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \ingroup signal_func_ifft
 */
AFAPI af_err af_ifft(af_array *out, const af_array in, const double norm_factor, const dim_t odim0);

#if AF_API_VERSION >= 31
/**
   C Interface for fast fourier transform on one dimensional signals

   \param[inout]  in is the input array on entry and the output of 1D inverse fourier transform at exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     \ref AF_SUCCESS if the ifft transform is successful,
               otherwise an appropriate error code is returned.

   \note The input \p in must be a complex array

   \ingroup signal_func_ifft
*/
AFAPI af_err af_ifft_inplace(af_array in, const double norm_factor);
#endif

/**
   C Interface for inverse fast fourier transform on two dimensional signals

   \param[out] out is the transformed array
   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \ingroup signal_func_ifft2
 */
AFAPI af_err af_ifft2(af_array *out, const af_array in, const double norm_factor, const dim_t odim0, const dim_t odim1);

#if AF_API_VERSION >= 31
/**
   C Interface for fast fourier transform on two dimensional signals

   \param[inout]  in is the input array on entry and the output of 2D inverse fourier transform on exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     \ref AF_SUCCESS if the ifft transform is successful,
               otherwise an appropriate error code is returned.

   \note The input \p in must be a complex array

   \ingroup signal_func_ifft2
*/
AFAPI af_err af_ifft2_inplace(af_array in, const double norm_factor);
#endif

/**
   C Interface for inverse fast fourier transform on three dimensional signals

   \param[out] out is the transformed array
   \param[in]  in is the input array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  odim0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  odim1 is the length of output signals along second dimension - used to either truncate/pad the input
   \param[in]  odim2 is the length of output signals along third dimension - used to either truncate/pad the input
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \ingroup signal_func_ifft3
 */
AFAPI af_err af_ifft3(af_array *out, const af_array in, const double norm_factor, const dim_t odim0, const dim_t odim1, const dim_t odim2);

#if AF_API_VERSION >= 31
/**
   C Interface for fast fourier transform on three dimensional signals

   \param[inout]  in is the input array on entry and the output of 3D inverse fourier transform on exit
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \return     \ref AF_SUCCESS if the ifft transform is successful,
               otherwise an appropriate error code is returned.

   \note The input \p must be a complex array

   \ingroup signal_func_ifft3
*/
AFAPI af_err af_ifft3_inplace(af_array in, const double norm_factor);
#endif

#if AF_API_VERSION >= 31
/**
   C Interface for real to complex fast fourier transform for one dimensional signals

   \param[out] out is a complex array containing the non redundant parts of \p in.
   \param[in]  in is a real array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  pad0 is the length of output signals along first dimension - used to either truncate/pad the input
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \note The first dimension of the output will be of size (pad0 / 2) + 1. The remaining dimensions are unchanged.

   \ingroup signal_func_fft_r2c
*/
AFAPI af_err af_fft_r2c (af_array *out, const af_array in, const double norm_factor, const dim_t pad0);
#endif

#if AF_API_VERSION >= 31
/**
   C Interface for real to complex fast fourier transform for two dimensional signals

   \param[out] out is a complex array containing the non redundant parts of \p in.
   \param[in]  in is a real array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  pad0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  pad1 is the length of output signals along second dimension - used to either truncate/pad the input
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \note The first dimension of the output will be of size (pad0 / 2) + 1. The second dimension of the output will be pad1. The remaining dimensions are unchanged.

   \ingroup signal_func_fft_r2c
*/
AFAPI af_err af_fft2_r2c(af_array *out, const af_array in, const double norm_factor, const dim_t pad0, const dim_t pad1);
#endif

#if AF_API_VERSION >= 31
/**
   C Interface for real to complex fast fourier transform for three dimensional signals

   \param[out] out is a complex array containing the non redundant parts of \p in.
   \param[in]  in is a real array
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  pad0 is the length of output signals along first dimension - used to either truncate/pad the input
   \param[in]  pad1 is the length of output signals along second dimension - used to either truncate/pad the input
   \param[in]  pad2 is the length of output signals along third dimension - used to either truncate/pad the input
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \note The first dimension of the output will be of size (pad0 / 2) + 1. The second dimension of the output will be pad1. The third dimension of the output will be pad 2.

   \ingroup signal_func_fft_r2c
*/
AFAPI af_err af_fft3_r2c(af_array *out, const af_array in, const double norm_factor, const dim_t pad0, const dim_t pad1, const dim_t pad2);
#endif

#if AF_API_VERSION >= 31
/**
   C Interface for complex to real fast fourier transform for one dimensional signals

   \param[out] out is a real array containing the output of the transform.
   \param[in]  in is a complex array containing only the non redundant parts of the signals.
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  is_odd is a flag signifying if the output should be even or odd size
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \note The first dimension of the output will be 2 * dim0 - 1 if is_odd is true else 2 * dim0 - 2 where dim0 is the first dimension of the input. The remaining dimensions are unchanged.

   \ingroup signal_func_fft_c2r
*/

AFAPI af_err af_fft_c2r (af_array *out, const af_array in, const double norm_factor, const bool is_odd);
#endif

#if AF_API_VERSION >= 31
/**
   C Interface for complex to real fast fourier transform for two dimensional signals

   \param[out] out is a real array containing the output of the transform.
   \param[in]  in is a complex array containing only the non redundant parts of the signals.
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  is_odd is a flag signifying if the output should be even or odd size
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \note The first dimension of the output will be 2 * dim0 - 1 if is_odd is true else 2 * dim0 - 2 where dim0 is the first dimension of the input. The remaining dimensions are unchanged.

   \ingroup signal_func_fft_c2r
*/
AFAPI af_err af_fft2_c2r(af_array *out, const af_array in, const double norm_factor, const bool is_odd);
#endif

#if AF_API_VERSION >= 31
/**
   C Interface for complex to real fast fourier transform for three dimensional signals

   \param[out] out is a real array containing the output of the transform.
   \param[in]  in is a complex array containing only the non redundant parts of the signals.
   \param[in]  norm_factor is the normalization factor with which the input is scaled before the transformation is applied
   \param[in]  is_odd is a flag signifying if the output should be even or odd size
   \return     \ref AF_SUCCESS if the fft transform is successful,
               otherwise an appropriate error code is returned.

   \note The first dimension of the output will be 2 * dim0 - 1 if is_odd is true else 2 * dim0 - 2 where dim0 is the first dimension of the input. The remaining dimensions are unchanged.

   \ingroup signal_func_fft_c2r
*/
AFAPI af_err af_fft3_c2r(af_array *out, const af_array in, const double norm_factor, const bool is_odd);
#endif

/**
   C Interface for convolution on one dimensional signals

   \param[out] out is convolved array
   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be flipped for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \param[in]  domain specifies if the convolution should be performed in frequency os spatial domain
   \return     \ref AF_SUCCESS if the convolution is successful,
               otherwise an appropriate error code is returned.

   \note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.

   \ingroup signal_func_convolve1
 */
AFAPI af_err af_convolve1(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode, af_conv_domain domain);

/**
   C Interface for convolution on two dimensional signals

   \param[out] out is convolved array
   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be flipped for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \param[in]  domain specifies if the convolution should be performed in frequency os spatial domain
   \return     \ref AF_SUCCESS if the convolution is successful,
               otherwise an appropriate error code is returned.

   \note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.

   \ingroup signal_func_convolve2
 */
AFAPI af_err af_convolve2(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode, af_conv_domain domain);

/**
   C Interface for convolution on three dimensional signals

   \param[out] out is convolved array
   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be flipped for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \param[in]  domain specifies if the convolution should be performed in frequency os spatial domain
   \return     \ref AF_SUCCESS if the convolution is successful,
               otherwise an appropriate error code is returned.

   \note The default parameter of \p domain, \ref AF_CONV_AUTO, heuristically switches between frequency and spatial domain.

   \ingroup signal_func_convolve3
 */
AFAPI af_err af_convolve3(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode, af_conv_domain domain);

/**
   C Interface for separable convolution on two dimensional signals

   \param[out] out is convolved array
   \param[in]  col_filter is filter that has to be applied along the coloumns
   \param[in]  row_filter is filter that has to be applied along the rows
   \param[in]  signal is the input array
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \return     \ref AF_SUCCESS if the convolution is successful,
               otherwise an appropriate error code is returned.

   \note Separable convolution only supports two(ONE-to-ONE and MANY-to-ONE) batch modes from the ones described
         in the detailed description section.

   \ingroup signal_func_convolve
 */
AFAPI af_err af_convolve2_sep(af_array *out, const af_array col_filter, const af_array row_filter, const af_array signal, const af_conv_mode mode);

/**
   C Interface for FFT-based convolution on one dimensional signals

   \param[out] out is convolved array
   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be used for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \return     \ref AF_SUCCESS if the convolution is successful,
               otherwise an appropriate error code is returned.

   \ingroup signal_func_fft_convolve1
 */
AFAPI af_err af_fft_convolve1(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode);

/**
   C Interface for FFT-based convolution on two dimensional signals

   \param[out] out is convolved array
   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be used for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \return     \ref AF_SUCCESS if the convolution is successful,
               otherwise an appropriate error code is returned.

   \ingroup signal_func_fft_convolve2
 */
AFAPI af_err af_fft_convolve2(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode);

/**
   C Interface for FFT-based convolution on three dimensional signals

   \param[out] out is convolved array
   \param[in]  signal is the input signal
   \param[in]  filter is the signal that shall be used for the convolution operation
   \param[in]  mode indicates if the convolution should be expanded or not(where output size equals input)
   \return     \ref AF_SUCCESS if the convolution is successful,
               otherwise an appropriate error code is returned.

   \ingroup signal_func_fft_convolve3
 */
AFAPI af_err af_fft_convolve3(af_array *out, const af_array signal, const af_array filter, const af_conv_mode mode);

/**
   C++ Interface for finite impulse response  filter

   \param[out] y is the output signal from the filter
   \param[in] b is the array containing the coefficients of the filter
   \param[in] x is the input signal to the filter

   \ingroup signal_func_fir
*/
AFAPI af_err af_fir(af_array *y, const af_array b, const af_array x);

/**
   C++ Interface for infinite impulse response filter

   \param[out] y is the output signal from the filter
   \param[in] b is the array containing the feedforward coefficients
   \param[in] a is the array containing the feedback coefficients
   \param[in] x is the input signal to the filter

   \note The feedforward coefficients are currently limited to a length of 512

   \ingroup signal_func_iir
*/
AFAPI af_err af_iir(af_array *y, const af_array b, const af_array a, const af_array x);
#ifdef __cplusplus
}
#endif