This file is indexed.

/usr/include/pbseq/alignment/algorithms/alignment/sdp/NonoverlappingSparseDynamicProgramming.h is in libblasr-dev 0~20161219-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#ifndef NONOVERLAPPING_SPARSE_DYNAMIC_PROGRAMMING_H_
#define NONOVERLAPPING_SPARSE_DYNAMIC_PROGRAMMING_H_

/*
 *
 * Compute the subset of fragmentSet of largest weight that is not overlapping.
 *
 */
#include "FragmentSort.h"
#include "SDPSet.h"
#include "SDPFragment.h"
#include "SDPColumn.h"
#include "../AlignmentUtils.h"
#include "../../../datastructures/alignment/Alignment.h"


template<typename T_Fragment>
int SDPHeaviestSubsequence(int queryLength,
													 vector<T_Fragment> &fragmentSet,
													 int indel, int match,
													 vector<int> &maxFragmentChain,
													 AlignmentType alignType=Global) {

	maxFragmentChain.clear();

	if (fragmentSet.size() < 1)
		return 0;
		
	std::sort(fragmentSet.begin(), fragmentSet.end(), LexicographicFragmentSort<T_Fragment>());

	SDPSet<SDPColumn> activeSet;

	int sweepX;
	int trailRow;
	int fSweep;
	int fi;
	for (fi = 0; fi < fragmentSet.size(); fi++) {
		fragmentSet[fi].index = fi;
	}

	sweepX = fragmentSet[0].x;

	fSweep = 0;
	int maxChainLength = 0;
	int maxChainFragment = -1;
	int minFragmentCost, minFragmentIndex;
	minFragmentCost = INF_INT;
	minFragmentIndex = -1;
	for (sweepX = 0; sweepX < queryLength; sweepX++) {
		//
		// For each fragment ending in sweepX, attempt to compute its cost
		// by looking for the best previous match.
		//
		int fSweepStart = fSweep;
		while (fSweep < fragmentSet.size() and 
					 fragmentSet[fSweep].x == sweepX) {

			//
			// Compute the cost of every fragment in the sweep.
			//
			int cp = INF_INT, cl = INF_INT, ca = INF_INT;
			SDPColumn curCol, predCol;
			curCol.col = fragmentSet[fSweep].y;
			//
			// Search preceeding fragments.
			//

			//
			// Compute the cost of fragment_f
			int foundPrev = 0;
			T_Fragment fragStartPoint;
			fragStartPoint.x = fragmentSet[fSweep].x - fragmentSet[fSweep].GetLength();
			fragStartPoint.y = fragmentSet[fSweep].y - fragmentSet[fSweep].GetLength();
			T_Fragment predFrag;
			
			int predFragScore;
			
			if (activeSet.Predecessor(fragStartPoint, predFrag)) {
				//
				// predCol points to the fragment with greatest value less than curCol.
				// 
				predFragScore = fragmentSet[predCol.optFragment].cost + 
					abs((fragmentSet[fSweep].x - fragmentSet[fSweep].y)
							- (fragmentSet[predCol.optFragment].x - fragmentSet[predCol.optFragment].y)) * indel;
				foundPrev = 1;
			}

			//
			// Now assign the score for the fragment.  When doing a local alignment
			// start a new chain if the score is not good.
			
			if (foundPrev and 
					(alignType == Global or
					 (alignType == Local and predFragScore < 0))) {				
				fragmentSet[fSweep].chainPrev = predCol.optFragment;
				fragmentSet[fSweep].cost = predFragScore - fragmentSet[fSweep].weight;
				fragmentSet[fSweep].chainLength = fragmentSet[fragmentSet[fSweep].chainPrev].chainLength + 1;
			}
			else {
				fragmentSet[fSweep].chainPrev = -1;
				fragmentSet[fSweep].cost = fragmentSet[fSweep].GetLength() * match - fragmentSet[fSweep].weight;
				fragmentSet[fSweep].chainLength = 1;
			}
			
			if (minFragmentCost > fragmentSet[fSweep].cost) {
				minFragmentCost  = fragmentSet[fSweep].cost;
				minFragmentIndex = fSweep;
				//	maxChainLength = fragmentSet[fSweep].chainLength;
			}
			
			if (fragmentSet[fSweep].chainLength > maxChainLength) {
				maxChainLength = fragmentSet[fSweep].chainLength;
				maxChainFragment = fSweep;
			}

			fSweep++;
		}
		
		//
		// Each column must contain the highest scoring hit in that column. 
		//
		fSweep = fSweepStart;
		while (fSweep < fragmentSet.size() and
					 fragmentSet[fSweep].x == sweepX) {
			//
			// These elements are removed from the sweep set since they are done being processed.
			// If they are the lowest cost in the value, update activeSet
			//
			SDPColumn col;
			int storeCol = 0;
			col.col = fragmentSet[fSweep].y;

			if (activeSet.Member(col)) {
				if (fragmentSet[col.optFragment].cost < fragmentSet[fSweep].cost) {
					storeCol = 1;
				}
			}
			else {
				storeCol = 1;
			}
			if (storeCol) {
				col.col = fragmentSet[fSweep].y;
				col.optFragment = fSweep;
				// 
				// Insert new column or replace col with a more optimal one.
				//
				activeSet.Insert(col);

				// 
				// The invariant structure of the activeSet is that
				// after inserting a fragment of score S at column col, 
				// the score of all columns greater than 'col' in col set
				// must be less than col. 
				//
				// To preserve this invariant, when an element is inserted
				// at 'col', look to columns greater.  As long as any columns
				// have scores that are greater than col, remove them.
				// Once a column col_next has been found that has a score less than S
				// by the structure of the loop invariant, all columns greater than col_next
				// are guaranteed to have lower score than S, so we can continue searching
				// through this loop.
				//
				// Since fragments are processed at most once, this remains O(M).
				
				SDPColumn successorCol = col;

				while (activeSet.Successor(col, successorCol) and
							 fragmentSet[successorCol.optFragment].cost > fragmentSet[fSweep].cost) {
					activeSet.Delete(successorCol);
				}
			}

			//
			// Now remove this fragment, it is at the end of the sweep line.
			//
			int deleted;
			deleted = activeSet.Delete(fragmentSet[fSweep]);
			assert(deleted);
			++fSweep;
		}
	}
	if (alignType == Local) {
		maxChainFragment = minFragmentIndex;
	}
	while (maxChainFragment != -1) {
		maxFragmentChain.push_back(maxChainFragment);
		maxChainFragment = fragmentSet[maxChainFragment].chainPrev;
	}
	std::reverse(maxFragmentChain.begin(), maxFragmentChain.end());
	return maxFragmentChain.size();
}

#endif