This file is indexed.

/usr/include/pbseq/alignment/algorithms/alignment/sdp/SparseDynamicProgrammingImpl.hpp is in libblasr-dev 0~20161219-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#ifndef SPARSE_DYNAMIC_PROGRAMMING_IMPL_HPP_
#define SPARSE_DYNAMIC_PROGRAMMING_IMPL_HPP_

#include <stdlib.h>
#include <stdint.h>
#include <algorithm>
#include <cassert>
#include <set>
#include <limits.h>
#include <ostream>
#include "SDPSet.hpp"
#include "SDPFragment.hpp"
#include "SDPColumn.hpp"
#include "FragmentSort.hpp"

template<typename T_Fragment>
void StoreAbove(std::vector<T_Fragment> &fragmentSet, DNALength fragmentLength) {
    (void)(fragmentLength);
	std::sort(fragmentSet.begin(), fragmentSet.end(), LexicographicFragmentSortByY<T_Fragment>());	
	for (size_t i = 1; i < fragmentSet.size(); i++) {
		if (fragmentSet[i-1].x <= fragmentSet[i].x 
   		    and fragmentSet[i-1].x + fragmentSet[i-1].length > fragmentSet[i].x 
			and fragmentSet[i-1].y < fragmentSet[i].y) {
			fragmentSet[i].SetAbove(fragmentSet[i-1].index);
		}
	}
	// Place back in original order.
	std::sort(fragmentSet.begin(), fragmentSet.end(), LexicographicFragmentSort<T_Fragment>());		
}

template<typename T_Fragment>
int SDPLongestCommonSubsequence(DNALength queryLength,
        std::vector<T_Fragment> &fragmentSet, 
        DNALength fragmentLength,
        int insertion, int deletion, int match,
        std::vector<int> &maxFragmentChain, AlignmentType alignType) {

    maxFragmentChain.clear();
    if (fragmentSet.size() < 1)
        return 0;

    std::sort(fragmentSet.begin(), fragmentSet.end(), LexicographicFragmentSort<T_Fragment>());

    SDPSet<Fragment> sweepSet;
    SDPSet<SDPColumn>   colSet;

    unsigned int sweepRow;
    unsigned int trailRow;
    VectorIndex fSweep, fTrail;
    VectorIndex fi;
    for (fi = 0; fi < fragmentSet.size(); fi++) {
        fragmentSet[fi].index = fi;
    }

    StoreAbove(fragmentSet, fragmentLength);
    sweepRow = fragmentSet[0].x;
    Fragment pred, succ;
    fSweep = 0;
    fTrail = 0;
    unsigned int maxChainLength = 0;
    int maxChainFragment = -1;
    int minFragmentCost, minFragmentIndex;
    minFragmentCost = INF_INT;
    minFragmentIndex = -1;
    for (; sweepRow < queryLength + fragmentLength; sweepRow++) {
        //
        // Add all elements on the sweep row to the sweep set.  Note that when
        // fSweep is past query.length.
        int startF = fSweep;
        size_t fragmentSetSize = fragmentSet.size();
        while (fSweep < fragmentSetSize and 
                fragmentSet[fSweep].x == sweepRow) {

            //
            // Compute the cost of every fragment in the sweep.
            //
            int cp = INF_INT, cl = INF_INT, ca = INF_INT;
            SDPColumn curCol, predCol;
            curCol.col = fragmentSet[fSweep].y;
            //
            // Search preceeding fragments.
            //
            //
            // Compute the cost of fragment_f
            int foundPrev = 0;
            int driftPenalty;
            if (colSet.Predecessor(curCol, predCol)) {
                //
                // predCol points to the fragment with greatest value less than curCol.
                // 
                // Baker and Giancarlo LCS cost
                driftPenalty = IndelPenalty(fragmentSet[fSweep].x, fragmentSet[fSweep].y,
                                            fragmentSet[predCol.optFragment].x, 
                                            fragmentSet[predCol.optFragment].y,
                                            insertion, deletion);
                cp = fragmentSet[predCol.optFragment].cost + driftPenalty;
                foundPrev = 1;
            }

            // Search overlapping fragments.
            if (sweepSet.Predecessor(fragmentSet[fSweep], pred)) {
                //
                //	Baker and Giancarlo LCS cost
                //  Cost with insertion and deletion penalty.
                //
                cl = pred.cost + 
                     MIN((int)(fragmentLength - (fragmentSet[fSweep].y - pred.y)) * match, 0) + 
                     IndelPenalty(fragmentSet[fSweep].x, fragmentSet[fSweep].y,
                                  pred.x, pred.y, insertion, deletion);
                foundPrev = 1;
            }

            int aboveIndex;
            if (fragmentSet[fSweep].GetAbove(aboveIndex)) {
                //	Baker and Giancarlo LCS cost 
                ca = fragmentSet[aboveIndex].cost + 
                      (fragmentLength - (int)(fragmentSet[fSweep].y - fragmentSet[aboveIndex].y)) * match + 
                      IndelPenalty(fragmentSet[fSweep].x, fragmentSet[fSweep].y, 
                                  fragmentSet[aboveIndex].x, 
                                  fragmentSet[aboveIndex].y, 
                                  insertion, deletion);
                foundPrev = 1;
            }

            //
            // Now compute the minimum of all these.
            //
            int minCost;
            minCost = MIN(cp, MIN(cl, ca));

            //
            //  If doing a global alignment, chain is always extended.  If local, the chain may not be.
            // 
            if (foundPrev and 
                (alignType == Global or
                (alignType == Local and minCost < 0))) {
                fragmentSet[fSweep].cost = minCost - fragmentSet[fSweep].weight;
                if (minCost == cp) {
                    fragmentSet[fSweep].chainPrev = predCol.optFragment;
                }
                else if (minCost == cl) {
                    fragmentSet[fSweep].chainPrev = pred.index;
                }
                else if (minCost == ca) {
                    fragmentSet[fSweep].chainPrev = aboveIndex;
                }
                assert(fragmentSet[fSweep].chainPrev >= 0 and
                       fragmentSet[fSweep].chainPrev < (int)fragmentSet.size());
                fragmentSet[fSweep].chainLength = fragmentSet[fragmentSet[fSweep].chainPrev].chainLength + 1;
            }
            else {
                if (alignType == Global) {
                    fragmentSet[fSweep].chainPrev = (int) -1;
                    fragmentSet[fSweep].cost = (fragmentSet[fSweep].x + fragmentSet[fSweep].y) * deletion +
                                               fragmentLength * match - fragmentSet[fSweep].weight;
                    fragmentSet[fSweep].chainLength = 1;
                }
                else if (alignType == Local) {
                    fragmentSet[fSweep].chainPrev = (int) -1;
                    fragmentSet[fSweep].cost = fragmentLength * match - fragmentSet[fSweep].weight;
                    fragmentSet[fSweep].chainLength = 1;
                }					
            }

            if (minFragmentCost > fragmentSet[fSweep].cost) {
                minFragmentCost = fragmentSet[fSweep].cost;
                minFragmentIndex = fSweep;
                //	maxChainLength = fragmentSet[fSweep].chainLength;
            }

            if (fragmentSet[fSweep].chainLength > maxChainLength) {
                maxChainLength = fragmentSet[fSweep].chainLength;
                maxChainFragment = fSweep;
            }

            // Done computing the optimal score for this fragment.
            fSweep++;
        }

        //
        // Insert all fragments in the sweep set 
        //
        fSweep = startF;
        while (fSweep < fragmentSetSize and 
                fragmentSet[fSweep].x == sweepRow) {
            //			cout << "inserting sweep set with index" << fragmentSet[fSweep].index << endl;
            sweepSet.Insert(fragmentSet[fSweep]);
            ++fSweep;
        }

        // Remove elements from the sweep set that are too far back.
        if (sweepRow >= fragmentLength + 1) {
            trailRow = sweepRow - fragmentLength - 1;
            while (fTrail < fragmentSetSize and
                   fragmentSet[fTrail].x == trailRow) {
                //
                // These elements are removed from the sweep set since they are done being processed.
                // If they are the lowest cost in the value, update colSet
                //
                SDPColumn col;
                int storeCol = 0;
                col.col = fragmentSet[fTrail].y;

                if (colSet.Member(col)) {
                    if (fragmentSet[col.optFragment].cost < fragmentSet[fTrail].cost) {
                        storeCol = 1;
                    }
                }
                else {
                    storeCol = 1;
                }
                if (storeCol) {
                    col.col = fragmentSet[fTrail].y;
                    col.optFragment = fTrail;
                    // 
                    // Insert new column or replace col with a more optimal one.
                    //
                    colSet.Insert(col);

                    // 
                    // The invariant structure of the colSet is that
                    // after inserting a fragment of score S at column col, 
                    // the score of all columns greater than 'col' in col set
                    // must be less than col. 
                    //
                    // To preserve this invariant, when an element is inserted
                    // at 'col', look to columns greater.  As long as any columns
                    // have scores that are greater than col, remove them.
                    // Once a column col_next has been found that has a score less than S
                    // by the structure of the loop invariant, all columns greater than col_next
                    // are guaranteed to have lower score than S, so we can continue searching
                    // through this loop.
                    //
                    // Since fragments are processed at most once, this remains O(M).

                    SDPColumn successorCol = col;

                    while (colSet.Successor(col, successorCol) and
                           fragmentSet[successorCol.optFragment].cost > fragmentSet[fTrail].cost) {
                        colSet.Delete(successorCol);
                    }
                }

                //
                // Now remove this fragment, it is at the end of the sweep line.
                //
                int deleted;
                deleted = sweepSet.Delete(fragmentSet[fTrail]);
                assert(deleted);

                ++fTrail;
            }
        }
    }
    if (alignType == Local) {
        maxChainFragment = minFragmentIndex;
    }
    while (maxChainFragment != -1) {
        maxFragmentChain.push_back(maxChainFragment);
        maxChainFragment = fragmentSet[maxChainFragment].chainPrev;
    }
    std::reverse(maxFragmentChain.begin(), maxFragmentChain.end());
    return maxFragmentChain.size();
}

#endif // __SPARSE_DYNAMIC_PROGRAMMING_IMPL_HPP_