This file is indexed.

/usr/include/deal.II/lac/trilinos_solver.h is in libdeal.ii-dev 8.5.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
// ---------------------------------------------------------------------
//
// Copyright (C) 2008 - 2017 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__trilinos_solver_h
#define dealii__trilinos_solver_h


#include <deal.II/base/config.h>

#ifdef DEAL_II_WITH_TRILINOS

#  include <deal.II/base/std_cxx11/shared_ptr.h>
#  include <deal.II/lac/exceptions.h>
#  include <deal.II/lac/solver_control.h>
#  include <deal.II/lac/vector.h>
#  include <deal.II/lac/la_parallel_vector.h>

DEAL_II_DISABLE_EXTRA_DIAGNOSTICS
#  include <Epetra_LinearProblem.h>
#  include <AztecOO.h>
#  include <Epetra_Operator.h>
#  include <Amesos.h>
DEAL_II_ENABLE_EXTRA_DIAGNOSTICS


DEAL_II_NAMESPACE_OPEN

namespace TrilinosWrappers
{
  // forward declarations
  class SparseMatrix;
  class VectorBase;
  class PreconditionBase;


  /**
   * Base class for solver classes using the Trilinos solvers. Since solvers
   * in Trilinos are selected based on flags passed to a generic solver
   * object, basically all the actual solver calls happen in this class, and
   * derived classes simply set the right flags to select one solver or
   * another, or to set certain parameters for individual solvers. For a
   * general discussion on the Trilinos solver package AztecOO, we refer to
   * the <a href = "http://trilinos.sandia.gov/packages/aztecoo/AztecOOUserGui
   * de.pdf">AztecOO user guide</a>.
   *
   * This solver class can also be used as a standalone class, where the
   * respective Krylov method is set via the flag <tt>solver_name</tt>. This
   * can be done at runtime (e.g., when parsing the solver from a
   * ParameterList) and is similar to the deal.II class SolverSelector.
   *
   * @ingroup TrilinosWrappers
   * @author Martin Kronbichler, 2008, 2009; extension for full compatibility
   * with LinearOperator class: Jean-Paul Pelteret, 2015
   */
  class SolverBase
  {
  public:

    /**
     * Enumeration object that is set in the constructor of the derived
     * classes and tells Trilinos which solver to use. This option can also be
     * set in the user program, so one might use this base class instead of
     * one of the specialized derived classes when the solver should be set at
     * runtime. Currently enabled options are:
     */
    enum SolverName
    {
      /**
       * Use the conjugate gradient (CG) algorithm.
       */
      cg,
      /**
       * Use the conjugate gradient squared (CGS) algorithm.
       */
      cgs,
      /**
       * Use the generalized minimum residual (GMRES) algorithm.
       */
      gmres,
      /**
       * Use the biconjugate gradient stabilized (BICGStab) algorithm.
       */
      bicgstab,
      /**
       * Use the transpose-free quasi-minimal residual (TFQMR) method.
       */
      tfqmr
    } solver_name;

    /**
     * Standardized data struct to pipe additional data to the solver.
     */

    struct AdditionalData
    {
      /**
       * Set the additional data field to the desired output format and puts
       * the restart parameter in case the derived class is GMRES.
       *
       * TODO: Find a better way for setting the GMRES restart parameter since
       * it is quite inelegant to set a specific option of one solver in the
       * base class for all solvers.
       */
      explicit
      AdditionalData (const bool         output_solver_details   = false,
                      const unsigned int gmres_restart_parameter = 30);

      /**
       * Enables/disables the output of solver details (residual in each
       * iterations etc.).
       */
      const bool output_solver_details;

      /**
       * Restart parameter for GMRES solver.
       */
      const unsigned int gmres_restart_parameter;
    };

    /**
     * Constructor. Takes the solver control object and creates the solver.
     */
    SolverBase (SolverControl  &cn);

    /**
     * Second constructor. This constructor takes an enum object that
     * specifies the solver name and sets the appropriate Krylov method.
     */
    SolverBase (const enum SolverName  solver_name,
                SolverControl         &cn);

    /**
     * Destructor.
     */
    virtual ~SolverBase ();

    /**
     * Solve the linear system <tt>Ax=b</tt>. Depending on the information
     * provided by derived classes and the object passed as a preconditioner,
     * one of the linear solvers and preconditioners of Trilinos is chosen.
     */
    void
    solve (const SparseMatrix     &A,
           VectorBase             &x,
           const VectorBase       &b,
           const PreconditionBase &preconditioner);

    /**
     * Solve the linear system <tt>Ax=b</tt> where <tt>A</tt> is an operator.
     * This function can be used for matrix free computation. Depending on the
     * information provided by derived classes and the object passed as a
     * preconditioner, one of the linear solvers and preconditioners of
     * Trilinos is chosen.
     */
    void
    solve (const Epetra_Operator  &A,
           VectorBase             &x,
           const VectorBase       &b,
           const PreconditionBase &preconditioner);

    /**
     * Solve the linear system <tt>Ax=b</tt> where both <tt>A</tt> and its
     * @p precondtioner are an operator.
     * This function can be used when both <tt>A</tt> and the @p preconditioner
     * are LinearOperators derived from a TrilinosPayload.
     * Depending on the information provided by derived classes and the object
     * passed as a preconditioner, one of the linear solvers and preconditioners
     * of Trilinos is chosen.
     */
    void
    solve (const Epetra_Operator  &A,
           VectorBase             &x,
           const VectorBase       &b,
           const Epetra_Operator  &preconditioner);

    /**
     * Solve the linear system <tt>Ax=b</tt> where <tt>A</tt> is an operator,
     * and the vectors @p x and @p b are native Trilinos vector types.
     * This function can be used when <tt>A</tt> is a LinearOperators derived
     * from a TrilinosPayload.
     * Depending on the information provided by derived classes and the object
     * passed as a preconditioner, one of the linear solvers and preconditioners
     * of Trilinos is chosen.
     */
    void
    solve (const Epetra_Operator    &A,
           Epetra_MultiVector       &x,
           const Epetra_MultiVector &b,
           const PreconditionBase   &preconditioner);

    /**
     * Solve the linear system <tt>Ax=b</tt> where both <tt>A</tt> and its
     * @p precondtioner are an operator, and the vectors @p x and @p b are
     * native Trilinos vector types.
     * This function can be used when both <tt>A</tt> and the @p preconditioner
     * are LinearOperators derived from a TrilinosPayload.
     * Depending on the information provided by derived classes and the object
     * passed as a preconditioner, one of the linear solvers and preconditioners
     * of Trilinos is chosen.
     */
    void
    solve (const Epetra_Operator    &A,
           Epetra_MultiVector       &x,
           const Epetra_MultiVector &b,
           const Epetra_Operator    &preconditioner);



    /**
     * Solve the linear system <tt>Ax=b</tt>. Depending on the information
     * provided by derived classes and the object passed as a preconditioner,
     * one of the linear solvers and preconditioners of Trilinos is chosen.
     * This class works with matrices according to the TrilinosWrappers
     * format, but can take deal.II vectors as argument. Since deal.II are
     * serial vectors (not distributed), this function does only what you
     * expect in case the matrix is locally owned. Otherwise, an exception
     * will be thrown.
     */
    void
    solve (const SparseMatrix           &A,
           dealii::Vector<double>       &x,
           const dealii::Vector<double> &b,
           const PreconditionBase       &preconditioner);

    /**
     * Solve the linear system <tt>Ax=b</tt> where <tt>A</tt> is an operator.
     * This function can be used for matrix free computations. Depending on
     * the information provided by derived classes and the object passed as a
     * preconditioner, one of the linear solvers and preconditioners of
     * Trilinos is chosen. This class works with matrices according to the
     * TrilinosWrappers format, but can take deal.II vectors as argument.
     * Since deal.II are serial vectors (not distributed), this function does
     * only what you expect in case the matrix is locally owned. Otherwise, an
     * exception will be thrown.
     */
    void
    solve (Epetra_Operator              &A,
           dealii::Vector<double>       &x,
           const dealii::Vector<double> &b,
           const PreconditionBase       &preconditioner);

    /**
     * Solve the linear system <tt>Ax=b</tt> for deal.II's parallel
     * distributed vectors. Depending on the information provided by derived
     * classes and the object passed as a preconditioner, one of the linear
     * solvers and preconditioners of Trilinos is chosen.
     */
    void
    solve (const SparseMatrix                                  &A,
           dealii::LinearAlgebra::distributed::Vector<double>       &x,
           const dealii::LinearAlgebra::distributed::Vector<double> &b,
           const PreconditionBase                              &preconditioner);

    /**
     * Solve the linear system <tt>Ax=b</tt> where <tt>A</tt> is an operator.
     * This function can be used for matrix free computation. Depending on the
     * information provided by derived classes and the object passed as a
     * preconditioner, one of the linear solvers and preconditioners of
     * Trilinos is chosen.
     */
    void
    solve (Epetra_Operator                                     &A,
           dealii::LinearAlgebra::distributed::Vector<double>       &x,
           const dealii::LinearAlgebra::distributed::Vector<double> &b,
           const PreconditionBase                              &preconditioner);


    /**
     * Access to object that controls convergence.
     */
    SolverControl &control() const;

    /**
     * Exception
     */
    DeclException1 (ExcTrilinosError,
                    int,
                    << "An error with error number " << arg1
                    << " occurred while calling a Trilinos function");

  protected:

    /**
     * Reference to the object that controls convergence of the iterative
     * solver. In fact, for these Trilinos wrappers, Trilinos does so itself,
     * but we copy the data from this object before starting the solution
     * process, and copy the data back into it afterwards.
     */
    SolverControl &solver_control;

  private:

    /**
     * The solve function is used to set properly the Epetra_LinearProblem,
     * once it is done this function solves the linear problem.
     */
    template<typename Preconditioner>
    void do_solve(const Preconditioner &preconditioner);

    /**
     * A function that sets the preconditioner that the solver will apply
     */
    template<typename Preconditioner>
    void set_preconditioner (AztecOO              &solver,
                             const Preconditioner &preconditioner);

    /**
     * A structure that collects the Trilinos sparse matrix, the right hand
     * side vector and the solution vector, which is passed down to the
     * Trilinos solver.
     */
    std_cxx11::shared_ptr<Epetra_LinearProblem> linear_problem;

    /**
     * A structure that contains a Trilinos object that can query the linear
     * solver and determine whether the convergence criterion have been met.
     */
    std_cxx11::shared_ptr<AztecOO_StatusTest> status_test;

    /**
     * A structure that contains the Trilinos solver and preconditioner
     * objects.
     */
    AztecOO solver;

    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };


  // provide a declaration for two explicit specializations
  template <>
  void
  SolverBase::set_preconditioner(AztecOO                &solver,
                                 const PreconditionBase &preconditioner);

  template <>
  void
  SolverBase::set_preconditioner(AztecOO               &solver,
                                 const Epetra_Operator &preconditioner);



  /**
   * An implementation of the solver interface using the Trilinos CG solver.
   *
   * @ingroup TrilinosWrappers
   * @author Martin Kronbichler, 2008
   */
  class SolverCG : public SolverBase
  {
  public:
    /**
     * Standardized data struct to pipe additional data to the solver.
     */

    struct AdditionalData
    {
      /**
       * Set the additional data field to the desired output format.
       */
      explicit
      AdditionalData (const bool output_solver_details = false);

      /**
       * Enables/disables the output of solver details (residual in each
       * iterations etc.).
       */
      bool output_solver_details;
    };

    /**
     * Constructor. In contrast to deal.II's own solvers, there is no need to
     * give a vector memory object.
     *
     * The last argument takes a structure with additional, solver dependent
     * flags for tuning.
     */
    SolverCG (SolverControl        &cn,
              const AdditionalData &data = AdditionalData());

  protected:
    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };



  /**
   * An implementation of the solver interface using the Trilinos CGS solver.
   *
   * @ingroup TrilinosWrappers
   * @author Martin Kronbichler, 2008
   */
  class SolverCGS : public SolverBase
  {
  public:
    /**
     * Standardized data struct to pipe additional data to the solver.
     */
    struct AdditionalData
    {
      /**
       * Set the additional data field to the desired output format.
       */
      explicit
      AdditionalData (const bool output_solver_details = false);

      /**
       * Enables/disables the output of solver details (residual in each
       * iterations etc.).
       */
      bool output_solver_details;
    };

    /**
     * Constructor. In contrast to deal.II's own solvers, there is no need to
     * give a vector memory object.
     *
     * The last argument takes a structure with additional, solver dependent
     * flags for tuning.
     */
    SolverCGS (SolverControl        &cn,
               const AdditionalData &data = AdditionalData());

  protected:
    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };



  /**
   * An implementation of the solver interface using the Trilinos GMRES
   * solver.
   *
   * @author Martin Kronbichler, 2008
   */
  class SolverGMRES : public SolverBase
  {
  public:
    /**
     * Standardized data struct to pipe additional data to the solver.
     */
    struct AdditionalData
    {
      /**
       * Constructor. By default, set the number of temporary vectors to 30,
       * i.e. do a restart every 30 iterations.
       */
      explicit
      AdditionalData (const bool         output_solver_details = false,
                      const unsigned int restart_parameter = 30);

      /**
       * Enables/disables the output of solver details (residual in each
       * iterations etc.).
       */
      bool output_solver_details;

      /**
       * Maximum number of tmp vectors.
       */
      unsigned int restart_parameter;
    };

    /**
     * Constructor. In contrast to deal.II's own solvers, there is no need to
     * give a vector memory object.
     *
     * The last argument takes a structure with additional, solver dependent
     * flags for tuning.
     */
    SolverGMRES (SolverControl        &cn,
                 const AdditionalData &data = AdditionalData());

  protected:
    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };



  /**
   * An implementation of the solver interface using the Trilinos BiCGStab
   * solver.
   *
   * @ingroup TrilinosWrappers
   * @author Martin Kronbichler, 2008
   */
  class SolverBicgstab : public SolverBase
  {
  public:
    /**
     * Standardized data struct to pipe additional data to the solver.
     */
    struct AdditionalData
    {
      /**
       * Set the additional data field to the desired output format.
       */
      explicit
      AdditionalData (const bool output_solver_details = false);

      /**
       * Enables/disables the output of solver details (residual in each
       * iterations etc.).
       */
      bool output_solver_details;
    };

    /**
     * Constructor. In contrast to deal.II's own solvers, there is no need to
     * give a vector memory object.
     *
     * The last argument takes a structure with additional, solver dependent
     * flags for tuning.
     */
    SolverBicgstab (SolverControl        &cn,
                    const AdditionalData &data = AdditionalData());

  protected:
    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };



  /**
   * An implementation of the solver interface using the Trilinos TFQMR
   * solver.
   *
   * @ingroup TrilinosWrappers
   * @author Martin Kronbichler, 2008
   */
  class SolverTFQMR : public SolverBase
  {
  public:
    /**
     * Standardized data struct to pipe additional data to the solver.
     */
    struct AdditionalData
    {
      /**
       * Set the additional data field to the desired output format.
       */
      explicit
      AdditionalData (const bool output_solver_details = false);

      /**
       * Enables/disables the output of solver details (residual in each
       * iterations etc.).
       */
      bool output_solver_details;
    };

    /**
     * Constructor. In contrast to deal.II's own solvers, there is no need to
     * give a vector memory object.
     *
     * The last argument takes a structure with additional, solver dependent
     * flags for tuning.
     */
    SolverTFQMR (SolverControl        &cn,
                 const AdditionalData &data = AdditionalData());

  protected:
    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };



  /**
   * An implementation of Trilinos direct solvers (using the Amesos package).
   * The data field AdditionalData::solver_type can be used to specify the
   * type of solver. It allows the use of built-in solvers Amesos_Klu as well
   * as third-party solvers Amesos_Superludist or Amesos_Mumps.
   *
   * For instructions on how to install Trilinos for use with direct solvers
   * other than KLU, see the link to the Trilinos installation instructions
   * linked to from the deal.II ReadMe file.
   *
   * @ingroup TrilinosWrappers
   * @author Martin Kronbichler, 2009, Uwe K&ouml;cher, 2014
   */
  class SolverDirect
  {
  public:

    /**
     * Standardized data struct to pipe additional data to the solver.
     */

    struct AdditionalData
    {
      /**
       * Set the additional data field to the desired output format.
       */
      explicit
      AdditionalData (const bool output_solver_details = false,
                      const std::string &solver_type = "Amesos_Klu");

      /**
       * Enables/disables the output of solver details (residual in each
       * iterations etc.).
       */
      bool output_solver_details;

      /**
       * Set the solver type (for third party solver support of Trilinos
       * Amesos package). Possibilities are:
       * <ul>
       * <li>  "Amesos_Lapack" </li>
       * <li>  "Amesos_Scalapack" </li>
       * <li>  "Amesos_Klu" </li>
       * <li>  "Amesos_Umfpack" </li>
       * <li>  "Amesos_Pardiso" </li>
       * <li>  "Amesos_Taucs" </li>
       * <li>  "Amesos_Superlu" </li>
       * <li>  "Amesos_Superludist" </li>
       * <li>  "Amesos_Dscpack" </li>
       * <li>  "Amesos_Mumps" </li>
       * </ul>
       * Note that the availability of these solvers in deal.II depends on
       * which solvers were set when configuring Trilinos.
       */
      std::string solver_type;
    };

    /**
     * Constructor. Takes the solver control object and creates the solver.
     */
    SolverDirect (SolverControl  &cn,
                  const AdditionalData &data = AdditionalData());

    /**
     * Destructor.
     */
    virtual ~SolverDirect ();

    /**
     * Initializes the direct solver for the matrix <tt>A</tt> and creates a
     * factorization for it with the package chosen from the additional
     * data structure. Note that there is no need for a preconditioner
     * here and solve() is not called.
     */
    void initialize (const SparseMatrix &A);

    /**
     * Solve the linear system <tt>Ax=b</tt> based on the
     * package set in intialize(). Note the matrix is not refactorized during
     * this call.
     */
    void solve (VectorBase &x, const VectorBase &b);

    /**
     * Solve the linear system <tt>Ax=b</tt>. Creates a factorization of the
     * matrix with the package chosen from the additional data structure and
     * performs the solve. Note that there is no need for a preconditioner
     * here.
     */
    void
    solve (const SparseMatrix     &A,
           VectorBase             &x,
           const VectorBase       &b);

    /**
     * Solve the linear system <tt>Ax=b</tt>. This class works with Trilinos
     * matrices, but takes deal.II serial vectors as argument. Since these
     * vectors are not distributed, this function does only what you expect in
     * case the matrix is serial (i.e., locally owned). Otherwise, an
     * exception will be thrown.
     */
    void
    solve (const SparseMatrix           &A,
           dealii::Vector<double>       &x,
           const dealii::Vector<double> &b);

    /**
     * Solve the linear system <tt>Ax=b</tt> for deal.II's own parallel
     * vectors. Creates a factorization of the matrix with the package chosen
     * from the additional data structure and performs the solve. Note that
     * there is no need for a preconditioner here.
     */
    void
    solve (const SparseMatrix                                  &A,
           dealii::LinearAlgebra::distributed::Vector<double>       &x,
           const dealii::LinearAlgebra::distributed::Vector<double> &b);

    /**
     * Access to object that controls convergence.
     */
    SolverControl &control() const;

    /**
     * Exception
     */
    DeclException1 (ExcTrilinosError,
                    int,
                    << "An error with error number " << arg1
                    << " occurred while calling a Trilinos function");

  private:
    /**
     * Actually performs the operations for solving the linear system,
     * including the factorization and forward and backward substitution.
     */
    void do_solve();

    /**
     * Reference to the object that controls convergence of the iterative
     * solver. In fact, for these Trilinos wrappers, Trilinos does so itself,
     * but we copy the data from this object before starting the solution
     * process, and copy the data back into it afterwards.
     */
    SolverControl &solver_control;

    /**
     * A structure that collects the Trilinos sparse matrix, the right hand
     * side vector and the solution vector, which is passed down to the
     * Trilinos solver.
     */
    std_cxx11::shared_ptr<Epetra_LinearProblem> linear_problem;

    /**
     * A structure that contains the Trilinos solver and preconditioner
     * objects.
     */
    std_cxx11::shared_ptr<Amesos_BaseSolver> solver;

    /**
     * Store a copy of the flags for this particular solver.
     */
    const AdditionalData additional_data;
  };

}

DEAL_II_NAMESPACE_CLOSE

#endif // DEAL_II_WITH_TRILINOS

/*----------------------------   trilinos_solver.h     ---------------------------*/

#endif
/*----------------------------   trilinos_solver.h     ---------------------------*/