/usr/include/dolfin/adaptivity/ErrorControl.h is in libdolfin-dev 2017.2.0.post0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | // Copyright (C) 2010 Marie E. Rognes
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// First added: 2010-08-19
// Last changed: 2012-09-03
#ifndef __ERROR_CONTROL_H
#define __ERROR_CONTROL_H
#include <vector>
#include <memory>
#include <dolfin/common/Hierarchical.h>
#include <dolfin/common/Variable.h>
#include <dolfin/fem/LinearVariationalSolver.h>
#include "adapt.h"
namespace dolfin
{
class DirichletBC;
class Form;
class Function;
class FunctionSpace;
class SpecialFacetFunction;
class Vector;
template <typename T> class MeshFunction;
/// (Goal-oriented) Error Control class.
/// The notation used here follows the notation in "Automated
/// goal-oriented error control I: stationary variational problems",
/// ME Rognes and A Logg, 2010-2011.
class ErrorControl : public Hierarchical<ErrorControl>, public Variable
{
public:
/// Create error control object
///
/// @param a_star (_Form_)
/// the bilinear form for the dual problem
/// @param L_star (_Form_)
/// the linear form for the dual problem
/// @param residual (_Form_)
/// a functional for the residual (error estimate)
/// @param a_R_T (_Form_)
/// the bilinear form for the strong cell residual problem
/// @param L_R_T (_Form_)
/// the linear form for the strong cell residual problem
/// @param a_R_dT (_Form_)
/// the bilinear form for the strong facet residual problem
/// @param L_R_dT (_Form_)
/// the linear form for the strong facet residual problem
/// @param eta_T (_Form_)
/// a linear form over DG_0 for error indicators
/// @param is_linear (bool)
/// true iff primal problem is linear
ErrorControl(std::shared_ptr<Form> a_star,
std::shared_ptr<Form> L_star,
std::shared_ptr<Form> residual,
std::shared_ptr<Form> a_R_T,
std::shared_ptr<Form> L_R_T,
std::shared_ptr<Form> a_R_dT,
std::shared_ptr<Form> L_R_dT,
std::shared_ptr<Form> eta_T,
bool is_linear);
/// Destructor.
~ErrorControl() {}
/// Default parameter values
static Parameters default_parameters()
{
Parameters p("error_control");
// Set parameters for dual solver
Parameters p_dual(LinearVariationalSolver::default_parameters());
p_dual.rename("dual_variational_solver");
p.add(p_dual);
return p;
}
/// Estimate the error relative to the goal M of the discrete
/// approximation 'u' relative to the variational formulation by
/// evaluating the weak residual at an approximation to the dual
/// solution.
///
/// @param u (_Function_)
/// the primal approximation
///
/// @param bcs (std::vector<_DirichletBC_>)
/// the primal boundary conditions
///
/// @return double
/// error estimate
double estimate_error(const Function& u,
const std::vector<std::shared_ptr<const DirichletBC> > bcs);
/// Compute error indicators
///
/// @param indicators (MeshFunction<double>)
/// the error indicators (to be computed)
///
/// @param u (_Function_)
/// the primal approximation
void compute_indicators(MeshFunction<double>& indicators,
const Function& u);
/// Compute strong representation (strong cell and facet
/// residuals) of the weak residual.
///
/// @param R_T (_Function_)
/// the strong cell residual (to be computed)
///
/// @param R_dT (_SpecialFacetFunction_)
/// the strong facet residual (to be computed)
///
/// @param u (_Function_)
/// the primal approximation
void residual_representation(Function& R_T,
SpecialFacetFunction& R_dT,
const Function& u);
/// Compute representation for the strong cell residual
/// from the weak residual
///
/// @param R_T (_Function_)
/// the strong cell residual (to be computed)
///
/// @param u (_Function_)
/// the primal approximation
void compute_cell_residual(Function& R_T, const Function& u);
/// Compute representation for the strong facet residual from the
/// weak residual and the strong cell residual
///
/// @param R_dT (_SpecialFacetFunction_)
/// the strong facet residual (to be computed)
///
/// @param u (_Function_)
/// the primal approximation
///
/// @param R_T (_Function_)
/// the strong cell residual
void compute_facet_residual(SpecialFacetFunction& R_dT,
const Function& u,
const Function& R_T);
/// Compute dual approximation defined by dual variational
/// problem and dual boundary conditions given by homogenized primal
/// boundary conditions.
///
/// @param z (_Function_)
/// the dual approximation (to be computed)
///
/// @param bcs (std::vector<DirichletBC>)
/// the primal boundary conditions
void compute_dual(Function& z,
const std::vector<std::shared_ptr<const DirichletBC> > bcs);
/// Compute extrapolation with boundary conditions
///
/// @param z (_Function_)
/// the extrapolated function (to be computed)
///
/// @param bcs (std::vector<_DirichletBC_>)
/// the dual boundary conditions
void compute_extrapolation(const Function& z,
const std::vector<std::shared_ptr<const DirichletBC> > bcs);
friend std::shared_ptr<ErrorControl>
adapt(const ErrorControl& ec,
std::shared_ptr<const Mesh> adapted_mesh,
bool adapt_coefficients);
private:
void apply_bcs_to_extrapolation(const std::vector<std::shared_ptr<const DirichletBC> > bcs);
// Bilinear and linear form for dual problem
std::shared_ptr<Form> _a_star;
std::shared_ptr<Form> _L_star;
// Functional for evaluating residual (error estimate)
std::shared_ptr<Form> _residual;
// Bilinear and linear form for computing cell residual R_T
std::shared_ptr<Form> _a_R_T;
std::shared_ptr<Form> _L_R_T;
// Bilinear and linear form for computing facet residual R_dT
std::shared_ptr<Form> _a_R_dT;
std::shared_ptr<Form> _L_R_dT;
// Linear form for computing error indicators
std::shared_ptr<Form> _eta_T;
// Computed extrapolation
std::shared_ptr<Function> _Ez_h;
bool _is_linear;
// Function spaces for extrapolation, cell bubble and cell cone:
std::shared_ptr<const FunctionSpace> _extrapolation_space;
std::shared_ptr<const FunctionSpace> _bubble_space;
std::shared_ptr<const FunctionSpace> _cone_space;
// Functions for cell bubble, cell cone, computed cell residual,
// computed facet residual, and interpolated extrapolated(!) dual:
std::shared_ptr<Function> _cell_bubble;
std::shared_ptr<Function> _cell_cone;
std::shared_ptr<Function> _R_T;
std::shared_ptr<SpecialFacetFunction> _R_dT;
std::shared_ptr<Function> _Pi_E_z_h;
};
}
#endif
|