/usr/include/dolfin/fem/DirichletBC.h is in libdolfin-dev 2017.2.0.post0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 | // Copyright (C) 2007-2012 Anders Logg and Garth N. Wells
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// Modified by Kristian Oelgaard, 2007
// Modified by Johan Hake, 2009
// Modified by Joachim B Haga, 2012
// Modified by Mikael Mortensen, 2014
//
// First added: 2007-04-10
// Last changed: 2014-01-23
//
// FIXME: This class needs some cleanup, in particular collecting
// all data from different representations into a common
// data structure (perhaps an std::vector<std::size_t> with
// facet indices).
#ifndef __DIRICHLET_BC_H
#define __DIRICHLET_BC_H
#include <map>
#include <set>
#include <string>
#include <vector>
#include <boost/multi_array.hpp>
#include <memory>
#include <unordered_map>
#include <dolfin/common/types.h>
#include <dolfin/common/Hierarchical.h>
#include <dolfin/common/MPI.h>
#include <dolfin/common/Variable.h>
namespace dolfin
{
class GenericFunction;
class FunctionSpace;
class Facet;
class GenericMatrix;
class GenericVector;
class SubDomain;
template<typename T> class MeshFunction;
/// Interface for setting (strong) Dirichlet boundary conditions.
///
/// u = g on G,
///
/// where u is the solution to be computed, g is a function
/// and G is a sub domain of the mesh.
///
/// A DirichletBC is specified by the function g, the function space
/// (trial space) and boundary indicators on (a subset of) the mesh
/// boundary.
///
/// The boundary indicators may be specified in a number of
/// different ways.
///
/// The simplest approach is to specify the boundary by a _SubDomain_
/// object, using the inside() function to specify on which facets
/// the boundary conditions should be applied. The boundary facets
/// will then be searched for and marked *only* on the first call to
/// apply. This means that the mesh could be moved after the first
/// apply and the boundary markers would still remain intact.
///
/// Alternatively, the boundary may be specified by a _MeshFunction_
/// over facets labeling all mesh facets together with a number that
/// specifies which facets should be included in the boundary.
///
/// The third option is to attach the boundary information to the
/// mesh. This is handled automatically when exporting a mesh from
/// for example VMTK.
///
/// The 'method' variable may be used to specify the type of method
/// used to identify degrees of freedom on the boundary. Available
/// methods are: topological approach (default), geometric approach,
/// and pointwise approach. The topological approach is faster, but
/// will only identify degrees of freedom that are located on a
/// facet that is entirely on the boundary. In particular, the
/// topological approach will not identify degrees of freedom for
/// discontinuous elements (which are all internal to the cell). A
/// remedy for this is to use the geometric approach. In the
/// geometric approach, each dof on each facet that matches the
/// boundary condition will be checked. To apply pointwise boundary
/// conditions e.g. pointloads, one will have to use the pointwise
/// approach. The three possibilities are "topological", "geometric"
/// and "pointwise".
///
/// Note: when using "pointwise", the boolean argument `on_boundary`
/// in SubDomain::inside will always be false.
///
/// The 'check_midpoint' variable can be used to decide whether or
/// not the midpoint of each facet should be checked when a
/// user-defined _SubDomain_ is used to define the domain of the
/// boundary condition. By default, midpoints are always checked.
/// Note that this variable may be of importance close to corners,
/// in which case it is sometimes important to check the midpoint to
/// avoid including facets "on the diagonal close" to a corner. This
/// variable is also of importance for curved boundaries (like on a
/// sphere or cylinder), in which case it is important *not* to
/// check the midpoint which will be located in the interior of a
/// domain defined relative to a radius.
///
/// Note that there may be caching employed in BC computation for
/// performance reasons. In particular, applicable DOFs are cached
/// by some methods on a first apply(). This means that changing a
/// supplied object (defining boundary subdomain) after first use may
/// have no effect. But this is implementation and method specific.
class DirichletBC : public Hierarchical<DirichletBC>, public Variable
{
public:
/// map type used by DirichletBC
typedef std::unordered_map<std::size_t, double> Map;
/// Create boundary condition for subdomain
///
/// @param[in] V (FunctionSpace)
/// The function space
/// @param[in] g (GenericFunction)
/// The value
/// @param[in] sub_domain (SubDomain)
/// The subdomain
/// @param[in] method (std::string)
/// Optional argument: A string specifying
/// the method to identify dofs
/// @param[in] check_midpoint (bool)
DirichletBC(std::shared_ptr<const FunctionSpace> V,
std::shared_ptr<const GenericFunction> g,
std::shared_ptr<const SubDomain> sub_domain,
std::string method="topological",
bool check_midpoint=true);
/// Create boundary condition for subdomain specified by index
///
/// @param[in] V (FunctionSpace)
/// The function space.
/// @param[in] g (GenericFunction)
/// The value.
/// @param[in] sub_domains (MeshFnunction<std::size_t>)
/// Subdomain markers
/// @param[in] sub_domain (std::size_t)
/// The subdomain index (number)
/// @param[in] method (std::string)
/// Optional argument: A string specifying the
/// method to identify dofs.
DirichletBC(std::shared_ptr<const FunctionSpace> V,
std::shared_ptr<const GenericFunction> g,
std::shared_ptr<const MeshFunction<std::size_t>> sub_domains,
std::size_t sub_domain,
std::string method="topological");
// TODO: Remove/deprecate this function
/// Create boundary condition for boundary data included in the mesh
///
/// @param[in] V (FunctionSpace)
/// The function space.
/// @param[in] g (GenericFunction)
/// The value.
/// @param[in] sub_domain (std::size_t)
/// The subdomain index (number)
/// @param[in] method (std::string)
/// Optional argument: A string specifying the
/// method to identify dofs.
DirichletBC(std::shared_ptr<const FunctionSpace> V,
std::shared_ptr<const GenericFunction> g,
std::size_t sub_domain,
std::string method="topological");
/// Create boundary condition for subdomain by boundary markers
/// (cells, local facet numbers)
///
/// @param[in] V (FunctionSpace)
/// The function space.
/// @param[in] g (GenericFunction)
/// The value.
/// @param[in] markers (std::vector<std:size_t>&)
/// Subdomain markers (facet index local to process)
/// @param[in] method (std::string)
/// Optional argument: A string specifying the
/// method to identify dofs.
DirichletBC(std::shared_ptr<const FunctionSpace> V,
std::shared_ptr<const GenericFunction> g,
const std::vector<std::size_t>& markers,
std::string method="topological");
/// Copy constructor. Either cached DOF data are copied.
///
/// @param[in] bc (DirichletBC&)
/// The object to be copied.
DirichletBC(const DirichletBC& bc);
/// Destructor
~DirichletBC();
/// Assignment operator. Either cached DOF data are assigned.
///
/// @param[in] bc (DirichletBC)
/// Another DirichletBC object.
const DirichletBC& operator= (const DirichletBC& bc);
/// Apply boundary condition to a matrix
///
/// @param[in,out] A (GenericMatrix)
/// The matrix to apply boundary condition to.
void apply(GenericMatrix& A) const;
/// Apply boundary condition to a vector
///
/// @param[in,out] b (GenericVector)
/// The vector to apply boundary condition to.
void apply(GenericVector& b) const;
/// Apply boundary condition to a linear system
///
/// @param[in,out] A (GenericMatrix)
/// The matrix to apply boundary condition to.
/// @param[in,out] b (GenericVector)
/// The vector to apply boundary condition to.
void apply(GenericMatrix& A, GenericVector& b) const;
/// Apply boundary condition to vectors for a nonlinear problem
///
/// @param[in,out] b (GenericVector)
/// The vector to apply boundary conditions to.
/// @param[in] x (GenericVector)
/// Another vector (nonlinear problem).
void apply(GenericVector& b, const GenericVector& x) const;
/// Apply boundary condition to a linear system for a nonlinear problem
///
/// @param[in,out] A (GenericMatrix)
/// The matrix to apply boundary conditions to.
/// @param[in,out] b (GenericVector)
/// The vector to apply boundary conditions to.
/// @param[in] x (GenericVector)
/// Another vector (nonlinear problem).
void apply(GenericMatrix& A, GenericVector& b,
const GenericVector& x) const;
/// Get Dirichlet dofs and values. If a method other than 'pointwise' is
/// used in parallel, the map may not be complete for local vertices since
/// a vertex can have a bc applied, but the partition might not have a
/// facet on the boundary. To ensure all local boundary dofs are marked,
/// it is necessary to call gather() on the returned boundary values.
///
/// @param[in,out] boundary_values (Map&)
/// Map from dof to boundary value.
void get_boundary_values(Map& boundary_values) const;
/// Get boundary values from neighbour processes. If a method other than
/// "pointwise" is used, this is necessary to ensure all boundary dofs are
/// marked on all processes.
///
/// @param[in,out] boundary_values (Map&)
/// Map from dof to boundary value.
void gather(Map& boundary_values) const;
/// Make rows of matrix associated with boundary condition zero,
/// useful for non-diagonal matrices in a block matrix.
///
/// @param[in,out] A (GenericMatrix&)
/// The matrix
void zero(GenericMatrix& A) const;
/// Make columns of matrix associated with boundary condition
/// zero, and update a (right-hand side) vector to reflect the
/// changes. Useful for non-diagonals.
///
/// @param[in,out] A (GenericMatrix&)
/// The matrix
/// @param[in,out] b (GenericVector&)
/// The vector
/// @param[in] diag_val (double)
/// This parameter would normally be -1, 0 or 1.
void zero_columns(GenericMatrix& A, GenericVector& b,
double diag_val=0) const;
/// Return boundary markers
///
/// @return std::vector<std::size_t>&
/// Boundary markers (facets stored as pairs of cells and
/// local facet numbers).
const std::vector<std::size_t>& markers() const;
/// Return function space V
///
/// @return FunctionSpace
/// The function space to which boundary conditions are applied.
std::shared_ptr<const FunctionSpace> function_space() const
{ return _function_space; }
/// Return boundary value g
///
/// @return GenericFunction
/// The boundary values.
std::shared_ptr<const GenericFunction> value() const;
/// Return shared pointer to subdomain
///
/// @return SubDomain
/// Shared pointer to subdomain.
std::shared_ptr<const SubDomain> user_sub_domain() const;
/// Set value g for boundary condition, domain remains unchanged
///
/// @param[in] g (GenericFucntion)
/// The value.
void set_value(std::shared_ptr<const GenericFunction> g);
/// Set value to 0.0
void homogenize();
/// Return method used for computing Dirichlet dofs
///
/// @return std::string
/// Method used for computing Dirichlet dofs ("topological",
/// "geometric" or "pointwise").
std::string method() const;
/// Default parameter values
/// @return Parameters
static Parameters default_parameters()
{
Parameters p("dirichlet_bc");
p.add("use_ident", true);
p.add("check_dofmap_range", true);
return p;
}
private:
class LocalData;
// Apply boundary conditions, common method
void apply(GenericMatrix* A, GenericVector* b,
const GenericVector* x) const;
// Check input data to constructor
void check() const;
// Initialize facets (from sub domain, mesh, etc)
void init_facets(const MPI_Comm mpi_comm) const;
// Initialize sub domain markers from sub domain
void
init_from_sub_domain(std::shared_ptr<const SubDomain> sub_domain) const;
// Initialize sub domain markers from MeshFunction
void init_from_mesh_function(const MeshFunction<std::size_t>& sub_domains,
std::size_t sub_domain) const;
// Initialize sub domain markers from mesh
void init_from_mesh(std::size_t sub_domain) const;
// Compute dofs and values for application of boundary conditions
// using given method
void compute_bc(Map& boundary_values, LocalData& data,
std::string method) const;
// Compute boundary values for facet (topological approach)
void compute_bc_topological(Map& boundary_values,
LocalData& data) const;
// Compute boundary values for facet (geometrical approach)
void compute_bc_geometric(Map& boundary_values,
LocalData& data) const;
// Compute boundary values for facet (pointwise approach)
void compute_bc_pointwise(Map& boundary_values,
LocalData& data) const;
// Check if the point is in the same plane as the given facet
bool on_facet(const double* coordinates, const Facet& facet) const;
// Check arguments for compatibility of tensors and dofmap,
// dim is means an axis to which bc applies
void check_arguments(GenericMatrix* A, GenericVector* b,
const GenericVector* x,
std::size_t dim) const;
// The function space (possibly a sub function space)
std::shared_ptr<const FunctionSpace> _function_space;
// The function
std::shared_ptr<const GenericFunction> _g;
// Search method
std::string _method;
// Possible search methods
static const std::set<std::string> methods;
public:
// User defined sub domain
std::shared_ptr<const SubDomain> _user_sub_domain;
private:
// Cached number of bc dofs, used for memory allocation on second use
mutable std::size_t _num_dofs;
// Boundary facets, stored by facet index (local to process)
mutable std::vector<std::size_t> _facets;
// Cells attached to boundary, stored by cell index with map to
// local dof number
mutable std::map<std::size_t, std::vector<std::size_t>>
_cells_to_localdofs;
// User defined mesh function
std::shared_ptr<const MeshFunction<std::size_t>> _user_mesh_function;
// User defined sub domain marker for mesh or mesh function
std::size_t _user_sub_domain_marker;
// Flag for whether midpoints should be checked
bool _check_midpoint;
// Local data for application of boundary conditions
class LocalData
{
public:
// Constructor
LocalData(const FunctionSpace& V);
// Coefficients
std::vector<double> w;
// Facet dofs
std::vector<std::size_t> facet_dofs;
// Coordinates for dofs
boost::multi_array<double, 2> coordinates;
};
};
}
#endif
|