/usr/include/dolfin/geometry/BoundingBoxTree1D.h is in libdolfin-dev 2017.2.0.post0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | // Copyright (C) 2013 Anders Logg
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// First added: 2013-05-02
// Last changed: 2014-02-24
#ifndef __BOUNDING_BOX_TREE_1D_H
#define __BOUNDING_BOX_TREE_1D_H
#include <algorithm>
#include <vector>
#include <dolfin/common/constants.h>
#include "GenericBoundingBoxTree.h"
namespace dolfin
{
/// Specialization of bounding box implementation to 1D
class BoundingBoxTree1D : public GenericBoundingBoxTree
{
protected:
/// Comparison operator for sorting of bounding boxes. Boxes are
/// sorted by their midpoints along the longest axis.
struct less_x
{
/// Bounding boxes
const std::vector<double>& bboxes;
/// Constructor
less_x(const std::vector<double>& bboxes): bboxes(bboxes) {}
/// Comparison operator
inline bool operator()(unsigned int i, unsigned int j)
{
const double* bi = bboxes.data() + 2*i;
const double* bj = bboxes.data() + 2*j;
return bi[0] + bi[1] < bj[0] + bj[1];
}
};
/// Return geometric dimension
std::size_t gdim() const { return 1; }
/// Return bounding box coordinates for node
const double* get_bbox_coordinates(unsigned int node) const
{
return _bbox_coordinates.data() + 2*node;
}
/// Check whether point (x) is in bounding box (node)
bool point_in_bbox(const double* x, unsigned int node) const
{
const double* b = _bbox_coordinates.data() + 2*node;
const double eps = DOLFIN_EPS_LARGE*(b[1] - b[0]);
return b[0] - eps <= x[0] && x[0] <= b[1] + eps;
}
/// Check whether bounding box (a) collides with bounding box (node)
bool bbox_in_bbox(const double* a, unsigned int node) const
{
const double* b = _bbox_coordinates.data() + 2*node;
const double eps = DOLFIN_EPS_LARGE*(b[1] - b[0]);
return b[0] - eps <= a[1] && a[0] <= b[1] + eps;
}
/// Compute squared distance between point and bounding box
double compute_squared_distance_bbox(const double* x,
unsigned int node) const
{
// Note: Some else-if might be in order here but I assume the
// compiler can do a better job at optimizing/parallelizing this
// version. This is also the way the algorithm is presented in
// Ericsson.
const double* b = _bbox_coordinates.data() + 2*node;
double r2 = 0.0;
if (x[0] < b[0]) r2 += (x[0] - b[0])*(x[0] - b[0]);
if (x[0] > b[1]) r2 += (x[0] - b[1])*(x[0] - b[1]);
return r2;
}
/// Compute squared distance between point and point
double compute_squared_distance_point(const double* x,
unsigned int node) const
{
const double* p = _bbox_coordinates.data() + 2*node;
return (x[0] - p[0])*(x[0] - p[0]);
}
/// Compute bounding box of bounding boxes
void compute_bbox_of_bboxes(double* bbox,
std::size_t& axis,
const std::vector<double>& leaf_bboxes,
const std::vector<unsigned int>::iterator& begin,
const std::vector<unsigned int>::iterator& end)
{
typedef std::vector<unsigned int>::const_iterator iterator;
// Get coordinates for first box
iterator it = begin;
const double* b = leaf_bboxes.data() + 2*(*it);
bbox[0] = b[0];
bbox[1] = b[1];
// Compute min and max over remaining boxes
for (++it; it != end; ++it)
{
const double* b = leaf_bboxes.data() + 2*(*it);
if (b[0] < bbox[0]) bbox[0] = b[0];
if (b[1] > bbox[1]) bbox[1] = b[1];
}
// Compute longest axis
axis = 0;
}
/// Compute bounding box of points
void compute_bbox_of_points(double* bbox,
std::size_t& axis,
const std::vector<Point>& points,
const std::vector<unsigned int>::iterator& begin,
const std::vector<unsigned int>::iterator& end)
{
typedef std::vector<unsigned int>::const_iterator iterator;
// Get coordinates for first point
iterator it = begin;
const double* p = points[*it].coordinates();
bbox[0] = p[0];
bbox[1] = p[0];
// Compute min and max over remaining boxes
for (; it != end; ++it)
{
const double* p = points[*it].coordinates();
if (p[0] < bbox[0]) bbox[0] = p[0];
if (p[0] > bbox[1]) bbox[1] = p[0];
}
// Compute longest axis
axis = 0;
}
/// Sort leaf bounding boxes along given axis
void sort_bboxes(std::size_t axis,
const std::vector<double>& leaf_bboxes,
const std::vector<unsigned int>::iterator& begin,
const std::vector<unsigned int>::iterator& middle,
const std::vector<unsigned int>::iterator& end)
{
std::nth_element(begin, middle, end, less_x(leaf_bboxes));
}
};
}
#endif
|