/usr/include/dolfin/geometry/SimplexQuadrature.h is in libdolfin-dev 2017.2.0.post0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 | // Copyright (C) 2014 Anders Logg
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// First added: 2014-02-24
// Last changed: 2017-09-22
#ifndef __SIMPLEX_QUADRATURE_H
#define __SIMPLEX_QUADRATURE_H
#include <vector>
#include <Eigen/Dense>
#include "Point.h"
namespace dolfin
{
// Forward declarations
class Cell;
/// This class defines quadrature rules for simplices.
class SimplexQuadrature
{
public:
/// Create SimplexQuadrature rules for reference simplex
///
/// *Arguments*
/// tdim (std::size_t)
/// The topological dimension of the simplex.
/// order (std::size_t)
/// The order of convergence of the quadrature rule.
///
SimplexQuadrature(std::size_t tdim, std::size_t order);
/// Compute quadrature rule for cell.
///
/// *Arguments*
/// cell (Cell)
/// The cell.
/// order (std::size_t)
/// The order of convergence of the quadrature rule.
///
/// *Returns*
/// std::pair<std::vector<double>, std::vector<double>>
/// A flattened array of quadrature points and a
/// corresponding array of quadrature weights.
std::pair<std::vector<double>, std::vector<double>>
compute_quadrature_rule(const Cell& cell,
std::size_t order) const;
/// Compute quadrature rule for simplex.
///
/// *Arguments*
/// coordinates (std::vector<Point>)
/// Vertex coordinates for the simplex
/// tdim (std::size_t)
/// The topological dimension of the simplex.
/// gdim (std::size_t)
/// The geometric dimension.
/// order (std::size_t)
/// The order of convergence of the quadrature rule.
///
/// *Returns*
/// std::pair<std::vector<double>, std::vector<double>>
/// A flattened array of quadrature points and a
/// corresponding array of quadrature weights.
std::pair<std::vector<double>, std::vector<double>>
compute_quadrature_rule(const std::vector<Point>& coordinates,
std::size_t gdim,
std::size_t order) const;
/// Compute quadrature rule for interval.
///
/// *Arguments*
/// coordinates (std::vector<Point>)
/// Vertex coordinates for the simplex
/// gdim (std::size_t)
/// The geometric dimension.
/// order (std::size_t)
/// The order of convergence of the quadrature rule.
///
/// *Returns*
/// std::pair<std::vector<double>, std::vector<double>>
/// A flattened array of quadrature points and a
/// corresponding array of quadrature weights.
std::pair<std::vector<double>, std::vector<double>>
compute_quadrature_rule_interval(const std::vector<Point>& coordinates,
std::size_t gdim,
std::size_t order) const;
/// Compute quadrature rule for triangle.
///
/// *Arguments*
/// coordinates (std::vector<Point>)
/// Vertex coordinates for the simplex
/// gdim (std::size_t)
/// The geometric dimension.
/// order (std::size_t)
/// The order of convergence of the quadrature rule.
///
/// *Returns*
/// std::pair<std::vector<double>, std::vector<double>>
/// A flattened array of quadrature points and a
/// corresponding array of quadrature weights.
std::pair<std::vector<double>, std::vector<double>>
compute_quadrature_rule_triangle(const std::vector<Point>& coordinates,
std::size_t gdim,
std::size_t order) const;
/// Compute quadrature rule for tetrahedron.
///
/// *Arguments*
/// coordinates (std::vector<Point>)
/// Vertex coordinates for the simplex
/// gdim (std::size_t)
/// The geometric dimension.
/// order (std::size_t)
/// The order of convergence of the quadrature rule.
///
/// *Returns*
/// std::pair<std::vector<double>, std::vector<double>>
/// A flattened array of quadrature points and a
/// corresponding array of quadrature weights.
std::pair<std::vector<double>, std::vector<double>>
compute_quadrature_rule_tetrahedron(const std::vector<Point>& coordinates,
std::size_t gdim,
std::size_t order) const;
/// Compress a quadrature rule using algorithms from
/// Compression of multivariate discrete measures and applications
/// A. Sommariva, M. Vianello
/// Numerical Functional Analysis and Optimization
/// Volume 36, 2015 - Issue 9
///
/// *Arguments*
/// qr (std::pair<std::vector<double>, std::vector<double>>)
/// The quadrature rule to be compressed
/// gdim (std::size_t)
/// The geometric dimension
/// quadrature_order (std::size_t)
/// The order of the quadrature rule
///
/// *Returns*
/// std::vector<std::size_t>
/// The indices of the points that were kept (empty
/// if no compression was made)
static std::vector<std::size_t>
compress(std::pair<std::vector<double>, std::vector<double>>& qr,
std::size_t gdim,
std::size_t quadrature_order);
private:
// Setup quadrature rule on a reference simplex
void setup_qr_reference_interval(std::size_t order);
void setup_qr_reference_triangle(std::size_t order);
void setup_qr_reference_tetrahedron(std::size_t order);
// Utility function for computing a Vandermonde type matrix in a
// Chebyshev basis
static Eigen::MatrixXd
Chebyshev_Vandermonde_matrix
(const std::pair<std::vector<double>, std::vector<double>>& qr,
std::size_t gdim, std::size_t N);
// Utility function for computing a Chebyshev basis
static std::vector<Eigen::VectorXd>
Chebyshev_polynomial(const Eigen::VectorXd& x, std::size_t N);
// Utility function for creating a matrix with coefficients in
// graded lexicographic order
static std::vector<std::vector<std::size_t>>
grlex(std::size_t gdim, std::size_t N);
// Utility function for calculating all combinations (n over k)
static std::size_t choose(std::size_t n, std::size_t k);
// The following code has been copied from
//
// https://people.sc.fsu.edu/~jburkardt/cpp_src/triangle_dunavant_rule/triangle_dunavant_rule.cpp
//
// License: LGPL
// Compute Duanvant quadrature rules for triangle
static void dunavant_rule(std::size_t order,
std::vector<std::vector<double> >& p,
std::vector<double>& w);
static std::size_t dunavant_order_num(std::size_t rule);
static std::vector<std::size_t> dunavant_suborder(int rule, int suborder_num);
static std::size_t dunavant_suborder_num(int rule);
static void dunavant_subrule(std::size_t rule,
std::size_t suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& w);
static void dunavant_subrule_01(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_02(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_03(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_04(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_05(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_06(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_07(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_08(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_09(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_10(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_11(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_12(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_13(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_14(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_15(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_16(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_17(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_18(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_19(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static void dunavant_subrule_20(int suborder_num,
std::vector<double>& suborder_xyz,
std::vector<double>& suborder_w);
static int i4_modp(int i, int j);
static int i4_wrap(int ival, int ilo, int ihi);
// The following code has been copied from
//
// https://people.sc.fsu.edu/~jburkardt/cpp_src/legendre_rule_fast/legendre_rule_fast.cpp
//
// License: LGPL
// Compute Gauss-Legendre quadrature rules for line
static void legendre_compute_glr(std::size_t n,
std::vector<double>& x,
std::vector<double>& w);
static void legendre_compute_glr0(std::size_t n,
double& p,
double& pp);
static void legendre_compute_glr1(std::size_t n,
std::vector<double>& x,
std::vector<double>& w);
static void legendre_compute_glr2(double pn0, int n, double& x1, double& d1);
static double ts_mult(std::vector<double>& u, double h, int n);
static double rk2_leg(double t1, double t2, double x, int n);
// Quadrature rule on reference simplex (points and weights)
std::vector<std::vector<double> > _p;
std::vector<double> _w;
};
}
#endif
|