/usr/include/dolfin/la/EigenMatrix.h is in libdolfin-dev 2017.2.0.post0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | // Copyright (C) 2015 Chris Richardson and Garth N. Wells
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#ifndef __DOLFIN_EIGEN_MATRIX_H
#define __DOLFIN_EIGEN_MATRIX_H
#include <iomanip>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <Eigen/Sparse>
#include <dolfin/common/MPI.h>
#include <dolfin/common/types.h>
#include "EigenVector.h"
#include "GenericMatrix.h"
#include "GenericVector.h"
#include "TensorLayout.h"
namespace dolfin
{
/// This class provides a sparse matrix class based on Eigen. It is
/// a simple wrapper for Eigen::SparseMatrix implementing the
/// GenericMatrix interface.
///
/// The interface is intentionally simple. For advanced usage,
/// access the underlying Eigen matrix and use the standard Eigen
/// interface which is documented at http://eigen.tuxfamily.org
class EigenMatrix : public GenericMatrix
{
public:
/// Eigen Matrix type
typedef Eigen::SparseMatrix<double, Eigen::RowMajor, int> eigen_matrix_type;
/// Create empty matrix
EigenMatrix();
/// Create M x N matrix
EigenMatrix(std::size_t M, std::size_t N);
/// Copy constructor
EigenMatrix(const EigenMatrix& A);
/// Destructor
virtual ~EigenMatrix();
//--- Implementation of the GenericTensor interface ---
/// Initialize zero tensor using tenor layout
virtual void init(const TensorLayout& tensor_layout);
/// Return true if empty
virtual bool empty() const
{ return size(0) == 0; }
/// Return size of given dimension
virtual std::size_t size(std::size_t dim) const;
/// Return local ownership range
virtual std::pair<std::int64_t, std::int64_t>
local_range(std::size_t dim) const
{ return {0, size(dim)}; }
/// Return number of non-zero entries in matrix
std::size_t nnz() const;
/// Set all entries to zero and keep any sparse structure
virtual void zero();
/// Finalize assembly of tensor
virtual void apply(std::string mode);
/// Return MPI communicator
virtual MPI_Comm mpi_comm() const
{ return _mpi_comm.comm(); }
/// Return informal string representation (pretty-print)
virtual std::string str(bool verbose) const;
//--- Implementation of the GenericMatrix interface ---
/// Return copy of matrix
virtual std::shared_ptr<GenericMatrix> copy() const;
/// Resize matrix to M x N
virtual void resize(std::size_t M, std::size_t N);
/// Initialise vector z to be compatible with the matrix-vector product
/// y = Ax.
/// @param z (GenericVector&)
/// Vector to initialise
/// @param dim (std::size_t)
/// The dimension (axis): dim = 0 --> z = y, dim = 1 --> z = x
virtual void init_vector(GenericVector& z, std::size_t dim) const;
/// Get block of values
virtual void get(double* block, std::size_t m, const dolfin::la_index* rows,
std::size_t n, const dolfin::la_index* cols) const;
/// Set block of values using global indices
virtual void set(const double* block, std::size_t m,
const dolfin::la_index* rows, std::size_t n,
const dolfin::la_index* cols);
/// Set block of values using local indices
virtual void set_local(const double* block, std::size_t m,
const dolfin::la_index* rows, std::size_t n,
const dolfin::la_index* cols)
{ set(block, m, rows, n, cols); }
/// Add block of values using global indices
virtual void add(const double* block, std::size_t m,
const dolfin::la_index* rows, std::size_t n,
const dolfin::la_index* cols);
/// Add block of values using local indices
virtual void add_local(const double* block, std::size_t m,
const dolfin::la_index* rows, std::size_t n,
const dolfin::la_index* cols)
{ add(block, m, rows, n, cols); }
/// Add multiple of given matrix (AXPY operation)
virtual void axpy(double a, const GenericMatrix& A,
bool same_nonzero_pattern);
/// Return norm of matrix
virtual double norm(std::string norm_type) const;
/// Get non-zero values of given row
virtual void getrow(std::size_t row, std::vector<std::size_t>& columns,
std::vector<double>& values) const;
/// Set values for given row
virtual void setrow(std::size_t row_idx,
const std::vector<std::size_t>& columns,
const std::vector<double>& values);
/// Set given rows (global row indices) to zero
virtual void zero(std::size_t m, const dolfin::la_index* rows);
/// Set given rows (local row indices) to zero
virtual void zero_local(std::size_t m, const dolfin::la_index* rows)
{ zero(m, rows); }
/// Set given rows to identity matrix
virtual void ident(std::size_t m, const dolfin::la_index* rows);
/// Set given rows to identity matrix
virtual void ident_local(std::size_t m, const dolfin::la_index* rows)
{ ident(m, rows); }
/// Matrix-vector product, y = Ax
virtual void mult(const GenericVector& x, GenericVector& y) const;
/// Matrix-vector product, y = A^T x
virtual void transpmult(const GenericVector& x, GenericVector& y) const;
/// Get diagonal of a matrix
virtual void get_diagonal(GenericVector& x) const;
/// Set diagonal of a matrix
virtual void set_diagonal(const GenericVector& x);
/// Multiply matrix by given number
virtual const EigenMatrix& operator*= (double a);
/// Divide matrix by given number
virtual const EigenMatrix& operator/= (double a);
/// Assignment operator
virtual const GenericMatrix& operator= (const GenericMatrix& A);
/// Return pointers to underlying compressed storage data See
/// GenericMatrix for documentation.
virtual std::tuple<const int*, const int*, const double*, std::size_t>
data() const;
//--- Special functions ---
/// Return linear algebra backend factory
virtual GenericLinearAlgebraFactory& factory() const;
//--- Special Eigen functions ---
/// Return reference to Eigen matrix (const version)
const eigen_matrix_type& mat() const
{ return _matA; }
/// Return reference to Eigen matrix (non-const version)
eigen_matrix_type& mat()
{ return _matA; }
/// Compress matrix (eliminate all zeros from a sparse matrix)
void compress()
{ _matA.makeCompressed(); }
/// Access value of given entry
double operator() (dolfin::la_index i, dolfin::la_index j) const
{ return _matA.coeff(i, j); }
/// Assignment operator
const EigenMatrix& operator= (const EigenMatrix& A);
private:
// MPI communicator
dolfin::MPI::Comm _mpi_comm;
// Eigen matrix object - row major access
eigen_matrix_type _matA;
};
}
#endif
|