This file is indexed.

/usr/include/dolfin/mesh/MultiMesh.h is in libdolfin-dev 2017.2.0.post0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
// Copyright (C) 2014-2016 Anders Logg
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// First added:  2014-03-03
// Last changed: 2017-09-22

#ifndef __MULTI_MESH_H
#define __MULTI_MESH_H

#include <memory>
#include <vector>
#include <map>
#include <deque>

#include <dolfin/common/Variable.h>
#include <dolfin/geometry/Point.h>

namespace dolfin
{

  // Forward declarations
  class Cell;
  class Mesh;
  class BoundaryMesh;
  class BoundingBoxTree;
  class SimplexQuadrature;

  /// This class represents a collection of meshes with arbitrary
  /// overlaps. A multimesh may be created from a set of standard
  /// meshes spaces by repeatedly calling add(), followed by a call to
  /// build(). Note that a multimesh is not useful until build() has
  /// been called.

  class MultiMesh : public Variable
  {
  public:

    /// Structure storing a quadrature rule
    typedef std::pair<std::vector<double>, std::vector<double> > quadrature_rule;

    /// A simplex is a list of points
    typedef std::vector<Point> Simplex;

    /// A polyhedron is a list of simplices
    typedef std::vector<Simplex> Polyhedron;

    /// Key to identify polyhedra
    typedef std::vector<std::size_t> IncExcKey;

    /// Create empty multimesh
    MultiMesh();

    /// Create multimesh from given list of meshes
    MultiMesh(std::vector<std::shared_ptr<const Mesh>> meshes,
              std::size_t quadrature_order);

    //--- Convenience constructors ---

    /// Create multimesh from one mesh
    MultiMesh(std::shared_ptr<const Mesh> mesh_0,
              std::size_t quadrature_order);

    /// Create multimesh from two meshes
    MultiMesh(std::shared_ptr<const Mesh> mesh_0,
              std::shared_ptr<const Mesh> mesh_1,
              std::size_t quadrature_order);

    /// Create multimesh from three meshes
    MultiMesh(std::shared_ptr<const Mesh> mesh_0,
              std::shared_ptr<const Mesh> mesh_1,
              std::shared_ptr<const Mesh> mesh_2,
              std::size_t quadrature_order);

    /// Destructor
    ~MultiMesh();

    /// Return the number of meshes (parts) of the multimesh
    ///
    /// *Returns*
    ///     std::size_t
    ///         The number of meshes (parts) of the multimesh.
    std::size_t num_parts() const;

    /// Return mesh (part) number i
    ///
    /// *Arguments*
    ///     i (std::size_t)
    ///         The part number
    ///
    /// *Returns*
    ///     _Mesh_
    ///         Mesh (part) number i
    std::shared_ptr<const Mesh> part(std::size_t i) const;

    /// Return the list of uncut cells for given part. The uncut cells
    /// are defined as all cells that don't collide with any cells in
    /// any other part with higher part number.
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///
    /// *Returns*
    ///     std::vector<unsigned int>
    ///         List of uncut cell indices for given part
    const std::vector<unsigned int>& uncut_cells(std::size_t part) const;

    /// Return the list of cut cells for given part. The cut cells are
    /// defined as all cells that collide with the boundary of any
    /// part with higher part number.
    ///
    /// FIXME: Figure out whether this makes sense; a cell may collide
    /// with the boundary of part j but may still be covered
    /// completely by the domain of part j + 1. Possible solution is
    /// to for each part i check overlapping parts starting from the
    /// top and working back down to i + 1.
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///
    /// *Returns*
    ///     std::vector<unsigned int>
    ///         List of cut cell indices for given part
    const std::vector<unsigned int> cut_cells(std::size_t part) const;

    /// Return the list of covered cells for given part. The covered
    /// cells are defined as all cells that collide with the domain of
    /// any part with higher part number, but not with the boundary of
    /// that part; in other words cells that are completely covered by
    /// any other part (and which therefore are inactive).
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///
    /// *Returns*
    ///     std::vector<unsigned int>
    ///         List of covered cell indices for given part
    const std::vector<unsigned int>& covered_cells(std::size_t part) const;

    /// Return the collision map for cut cells of the given part
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///
    /// *Returns*
    ///     std::map<unsigned int, std::vector<std::pair<std::size_t, unsigned int> > >
    ///         A map from cell indices of cut cells to a list of
    ///         cutting cells. Each cutting cell is represented as a
    ///         pair (part_number, cutting_cell_index).
    const std::map<unsigned int,
                   std::vector<std::pair<std::size_t, unsigned int> > >&
    collision_map_cut_cells(std::size_t part) const;

    /// Return quadrature rules for cut cells on the given part
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///
    /// *Returns*
    ///     std::map<unsigned int, std::pair<std::vector<double>, std::vector<double> > >
    ///         A map from cell indices of cut cells to quadrature
    ///         rules. Each quadrature rule is represented as a pair
    ///         of a flattened array of quadrature points and a
    ///         corresponding array of quadrature weights.
    const std::map<unsigned int, quadrature_rule >&
    quadrature_rules_cut_cells(std::size_t part) const;

    /// Return quadrature rule for a given cut cell on the given part
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///     cell (unsigned int)
    ///         The cell index
    ///
    /// *Returns*
    ///     std::pair<std::vector<double>, std::vector<double> >
    ///         A quadrature rule represented as a pair of a flattened
    ///         array of quadrature points and a corresponding array
    ///         of quadrature weights. An error is raised if the given
    ///         cell is not in the map.
    const quadrature_rule
    quadrature_rules_cut_cells(std::size_t part, unsigned int cell_index) const;

    /// Return quadrature rules for the overlap on the given part.
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///
    /// *Returns*
    ///     std::map<unsigned int, std::vector<std::pair<std::vector<double>, std::vector<double> > > >
    ///         A map from cell indices of cut cells to quadrature
    ///         rules.  A separate quadrature rule is given for each
    ///         cutting cell and stored in the same order as in the
    ///         collision map. Each quadrature rule is represented as
    ///         a pair of an array of quadrature points and a
    ///         corresponding flattened array of quadrature weights.
    const std::map<unsigned int, std::vector<quadrature_rule> >&
    quadrature_rules_overlap(std::size_t part) const;

    /// Return quadrature rules for the overlap for a given cell
    /// on the given part.
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    //      cell (unsigned int)
    //          The cell index
    ///
    /// *Returns*
    ///     std::vector<std::pair<std::vector<double>, std::vector<double> > >
    ///         A vector of quadrature rules on the cut cell. A separate
    ///         quadrature rule is given for each cutting cell and stored
    ///         in the same order as in the collision map.
    ///         A quadrature rule represented as a pair of a flattened
    ///         array of quadrature points and a corresponding array
    ///         of quadrature weights. An error is raised if the given
    ///         cell is not in the map.
    const std::vector<quadrature_rule>
    quadrature_rules_overlap(std::size_t part, unsigned int cell) const;

    /// Return quadrature rules for the interface on the given part
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///
    /// *Returns*
    ///     std::map<unsigned int, std::vector<std::pair<std::vector<double>, std::vector<double> > > >
    ///         A map from cell indices of cut cells to quadrature
    ///         rules on an interface part cutting through the cell.
    ///         A separate quadrature rule is given for each cutting
    ///         cell and stored in the same order as in the collision
    ///         map. Each quadrature rule is represented as a pair of
    ///         an array of quadrature points and a corresponding
    ///         flattened array of quadrature weights.
    const std::map<unsigned int, std::vector<quadrature_rule> >&
    quadrature_rules_interface(std::size_t part) const;


    /// Return quadrature rules for the interface of a given cut cell
    /// on the given part
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///     cell (unsigned int)
    ///         The cell index
    ///
    /// *Returns*
    ///     std::vector<std::pair<std::vector<double>, std::vector<double> > >
    ///         A vector of quadrature rules on the cut cell. A separate
    ///         quadrature rule is given for each cutting cell and stored
    ///         in the same order as in the collision map.
    ///         Each quadrature rule represented as a pair of a flattened
    ///         array of quadrature points and a corresponding array
    ///         of quadrature weights. An error is raised if the given
    ///         cell is not in the map.
    ///
    /// Developer note: this function is mainly useful from Python and
    /// could be replaced by a suitable typemap that would make the
    /// previous more general function accessible from Python.
    const std::vector<quadrature_rule>
    quadrature_rules_interface(std::size_t part,
			       unsigned int cell_index) const;


    /// Return facet normals for the interface on the given part
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///
    /// *Returns*
    ///     std::map<unsigned int, std::vector<std::vector<double> > >
    ///         A map from cell indices of cut cells to facet normals
    ///         on an interface part cutting through the cell. A
    ///         separate list of facet normals, one for each
    ///         quadrature point, is given for each cutting cell and
    ///         stored in the same order as in the collision map. The
    ///         facet normals for each set of quadrature points is
    ///         stored as a contiguous flattened array, the length of
    ///         which should be equal to the number of quadrature
    ///         points multiplied by the geometric dimension. Puh!
    const std::map<unsigned int, std::vector<std::vector<double> > >&
    facet_normals(std::size_t part) const;

    /// Return the bounding box tree for the mesh of the given part
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///
    /// *Returns*
    ///     std::shared_ptr<const BoundingBoxTree>
    ///         The bounding box tree
    std::shared_ptr<const BoundingBoxTree>
    bounding_box_tree(std::size_t part) const;

    /// Return the bounding box tree for the boundary mesh of the
    /// given part
    ///
    /// *Arguments*
    ///     part (std::size_t)
    ///         The part number
    ///
    /// *Returns*
    ///     std::shared_ptr<const BoundingBoxTree>
    ///         The bounding box tree
    std::shared_ptr<const BoundingBoxTree>
    bounding_box_tree_boundary(std::size_t part) const;

    /// Add mesh
    ///
    /// *Arguments*
    ///     mesh (_Mesh_)
    ///         The mesh
    void add(std::shared_ptr<const Mesh> mesh);

    /// Build multimesh
    void build(std::size_t quadrature_order=2);

    /// Check whether multimesh has been built
    bool is_built() const { return _is_built; }

    /// Clear multimesh
    void clear();

    /// Default parameter values
    static Parameters default_parameters()
    {
      Parameters p("multimesh");

      //p.add("quadrature_order", 1);
      p.add("compress_volume_quadrature", false);
      p.add("compress_interface_quadrature", false);

      return p;
    }

    //--- The functions below are mainly useful for testing/debugging ---

    /// Compute total interface area or the total volume of multimesh
    /// by summing up quadrature weights.  If the area or volume of
    /// the domain mesh is known, this is a good test to verify that
    /// the mesh-mesh intersections and quadrature are correct.
    double compute_area() const;

    /// Corresponding function for volume
    double compute_volume() const;

    /// Create matplotlib string to plot 2D multimesh (small meshes only)
    std::string plot_matplotlib(double delta_z=1,
				const std::string& filename="") const;

  private:

    // Flag for whether multimesh has been built
    bool _is_built;

    // List of meshes
    std::vector<std::shared_ptr<const Mesh> > _meshes;

    // List of boundary meshes
    std::vector<std::shared_ptr<BoundaryMesh> > _boundary_meshes;

    // List of bounding box trees for meshes
    std::vector<std::shared_ptr<BoundingBoxTree> > _trees;

    // List of bounding box trees for boundary meshes
    std::vector<std::shared_ptr<BoundingBoxTree> > _boundary_trees;

    // Cell indices for all uncut cells for all parts. Access data by
    //
    //     c = _uncut_cells[i][j]
    //
    // where
    //
    //     c = cell index for an uncut cell
    //     i = the part (mesh) number
    //     j = the cell number (in the list of uncut cells)
    std::vector<std::vector<unsigned int> > _uncut_cells;

    // Cell indices for all covered cells for all parts. Access data by
    //
    //     c = _covered_cells[i][j]
    //
    // where
    //
    //     c = cell index for a covered cell
    //     i = the part (mesh) number
    //     j = the cell number (in the list of covered cells)
    std::vector<std::vector<unsigned int> > _covered_cells;

    // Developer note 1: The data structures _collision_map_cut_cells
    // and _quadrature_rules_cut_cells may be changed from maps to
    // vectors and indexed by the number of the cut cell (in the list
    // of cut cells), instead of indexed by the local cell index as
    // here, if we find that this is important for performance.
    //
    // Developer note 2: Quadrature points are naturally a part of a
    // form (or a term in a form) and not a part of a mesh. However,
    // for now we use a global (to the multimesh) quadrature rule for
    // all cut cells, for simplicity.

    // Collision map for cut cells. Access data by
    //
    //     c = _collision_map_cut_cells[i][j][k]
    //
    // where
    //
    //     c.first  = part number for the cutting mesh
    //     c.second = cell index for the cutting cell
    //            i = the part (mesh) number
    //            j = the cell number (local cell index
    //            k = the collision number (in the list of cutting cells)
    std::vector<std::map<unsigned int,
                         std::vector<std::pair<std::size_t, unsigned int> > > >
    _collision_maps_cut_cells;

    // FIXME: test saving collision with boundary in its own data
    // structure (this saves only the boundary part)
    std::vector<std::map<unsigned int,
                         std::vector<std::pair<std::size_t, unsigned int> > > >
    _collision_maps_cut_cells_boundary;

    // Quadrature rules for cut cells. Access data by
    //
    //     q = _quadrature_rules_cut_cells[i][j]
    //
    // where
    //
    //     q.first  = quadrature weights, array of length num_points
    //     q.second = quadrature points, flattened num_points x gdim array
    //            i = the part (mesh) number
    //            j = the cell number (local cell index)
    std::vector<std::map<unsigned int, quadrature_rule> >
    _quadrature_rules_cut_cells;

    // Quadrature rules for overlap. Access data by
    //
    //     q = _quadrature_rules_overlap[i][j][k]
    //
    // where
    //
    //     q.first  = quadrature weights, array of length num_points
    //     q.second = quadrature points, flattened num_points x gdim array
    //            i = the part (mesh) number
    //            j = the cell number (local cell index)
    //            k = the collision number (in the list of cutting cells)
    std::vector<std::map<unsigned int, std::vector<quadrature_rule> > >
    _quadrature_rules_overlap;

    // Quadrature rules for interface. Access data by
    //
    //     q = _quadrature_rules_interface[i][j][k]
    //
    // where
    //
    //     q.first  = quadrature weights, array of length num_points
    //     q.second = quadrature points, flattened num_points x gdim array
    //            i = the part (mesh) number
    //            j = the cell number (local cell index)
    //            k = the collision number (in the list of cutting cells)
    std::vector<std::map<unsigned int, std::vector<quadrature_rule> > >
    _quadrature_rules_interface;

    // Facet normals for interface. Access data by
    //
    //     n = _facet_normals_interface[i][j][k][
    //
    // where
    //
    //     n = a flattened array vector of facet normals, one point for
    //         each quadrature point
    //     i = the part (mesh) number
    //     j = the cell number (local cell index)
    //     k = the collision number (in the list of cutting cells)
    std::vector<std::map<unsigned int, std::vector<std::vector<double> > > >
    _facet_normals;

    // Build boundary meshes
    void _build_boundary_meshes();

    // Build bounding box trees
    void _build_bounding_box_trees();

    // Build collision maps
    void _build_collision_maps();
    //void _build_collision_maps_same_topology();
    //void _build_collision_maps_different_topology();

    // Build quadrature rules for the cut cells
    void _build_quadrature_rules_cut_cells(std::size_t quadrature_order);

    // Build quadrature rules for the overlap
    void _build_quadrature_rules_overlap(std::size_t quadrature_order);

    // Build quadrature rules and normals for the interface
    void _build_quadrature_rules_interface(std::size_t quadrature_order);

    // Help function to determine if interface intersection is
    // (exactly) overlapped by a cutting cell
    bool _is_overlapped_interface(std::vector<Point> simplex,
				  const Cell cut_cell,
				  Point simplex_normal) const;

    // Add quadrature rule for simplices in polyhedron. Returns the
    // number of points generated for each simplex.
    std::size_t _add_quadrature_rule(quadrature_rule& qr,
				     const SimplexQuadrature& sq,
				     const Simplex& simplex,
				     std::size_t gdim,
				     std::size_t quadrature_order,
				     double factor) const;

    // Add quadrature rule to existing quadrature rule (append dqr to
    // qr). Returns number of points added.
    std::size_t _add_quadrature_rule(quadrature_rule& qr,
                                     const quadrature_rule& dqr,
                                     std::size_t gdim,
                                     double factor) const;

    // Append normal to list of normals npts times
    void _add_normal(std::vector<double>& normals,
                     const Point& normal,
                     std::size_t npts,
                     std::size_t gdim) const;

    // Plot multimesh
    void _plot() const;

    // Inclusion-exclusion for overlap
    void _inclusion_exclusion_overlap
      (std::vector<quadrature_rule>& qr,
       const SimplexQuadrature& sq,
       const std::vector<std::pair<std::size_t, Polyhedron> >& initial_polyhedra,
       std::size_t tdim,
       std::size_t gdim,
       std::size_t quadrature_order) const;

    // Inclusion-exclusion for interface
    void _inclusion_exclusion_interface
      (quadrature_rule& qr,
       std::vector<double>& normals,
       const SimplexQuadrature& sq,
       const Simplex& Eij,
       const Point& facet_normal,
       const std::vector<std::pair<std::size_t, Polyhedron> >& initial_polygons,
       std::size_t tdim,
       std::size_t gdim,
       std::size_t quadrature_order) const;

    // Construct and return mapping from boundary facets to full mesh
    std::vector<std::vector<std::pair<std::size_t, std::size_t> > >
      _boundary_facets_to_full_mesh(std::size_t part) const;

    // Impose consistency of _cut_cells, so that only the cells with
    // a nontrivial interface quadrature rule are classified as cut.
    void _impose_cut_cell_consistency();

    // Remove quadrature rule if the sum of the weights is less than a
    // tolerance
    static void remove_quadrature_rule(quadrature_rule& qr,
				       double tolerance);
  };



}


#endif