/usr/include/dolfin/nls/NewtonSolver.h is in libdolfin-dev 2017.2.0.post0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | // Copyright (C) 2005-2008 Garth N. Wells
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// Modified by Anders Logg 2006-2011
// Modified by Anders E. Johansen 2011
//
// First added: 2005-10-23
// Last changed: 2013-11-20
#ifndef __NEWTON_SOLVER_H
#define __NEWTON_SOLVER_H
#include <utility>
#include <memory>
#include <dolfin/common/MPI.h>
#include <dolfin/common/Variable.h>
namespace dolfin
{
// Forward declarations
class GenericLinearSolver;
class GenericLinearAlgebraFactory;
class GenericMatrix;
class GenericVector;
class NonlinearProblem;
/// This class defines a Newton solver for nonlinear systems of
/// equations of the form :math:`F(x) = 0`.
class NewtonSolver : public Variable
{
public:
/// Create nonlinear solver
explicit NewtonSolver(MPI_Comm comm=MPI_COMM_WORLD);
/// Create nonlinear solver using provided linear solver
///
/// *Arguments*
/// comm (_MPI_Ccmm_)
/// The MPI communicator.
/// solver (_GenericLinearSolver_)
/// The linear solver.
/// factory (_GenericLinearAlgebraFactory_)
/// The factory.
NewtonSolver(MPI_Comm comm, std::shared_ptr<GenericLinearSolver> solver,
GenericLinearAlgebraFactory& factory);
/// Destructor
virtual ~NewtonSolver();
/// Solve abstract nonlinear problem :math:`F(x) = 0` for given
/// :math:`F` and Jacobian :math:`\dfrac{\partial F}{\partial x}`.
///
/// *Arguments*
/// nonlinear_function (_NonlinearProblem_)
/// The nonlinear problem.
/// x (_GenericVector_)
/// The vector.
///
/// *Returns*
/// std::pair<std::size_t, bool>
/// Pair of number of Newton iterations, and whether
/// iteration converged)
std::pair<std::size_t, bool> solve(NonlinearProblem& nonlinear_function,
GenericVector& x);
/// Return current Newton iteration number
///
/// *Returns*
/// std::size_t
/// The iteration number.
std::size_t iteration() const;
/// Return number of Krylov iterations elapsed since
/// solve started
///
/// *Returns*
/// std::size_t
/// The number of iterations.
std::size_t krylov_iterations() const;
/// Return current residual
///
/// *Returns*
/// double
/// Current residual.
double residual() const;
/// Return initial residual
///
/// *Returns*
/// double
/// Initial residual.
double residual0() const;
/// Return current relative residual
///
/// *Returns*
/// double
/// Current relative residual.
double relative_residual() const;
/// Return the linear solver
///
/// *Returns*
/// _GenericLinearSolver_
/// The linear solver.
GenericLinearSolver& linear_solver() const;
/// Default parameter values
///
/// *Returns*
/// _Parameters_
/// Parameter values.
static Parameters default_parameters();
/// Set relaxation parameter. Default value 1.0 means full
/// Newton method, value smaller than 1.0 relaxes the method
/// by shrinking effective Newton step size by the given factor.
///
/// *Arguments*
/// relaxation_parameter(double)
/// Relaxation parameter value.
void set_relaxation_parameter(double relaxation_parameter)
{ _relaxation_parameter = relaxation_parameter; }
/// Get relaxation parameter
///
/// *Returns*
/// double
/// Relaxation parameter value.
double get_relaxation_parameter()
{ return _relaxation_parameter; }
protected:
/// Convergence test. It may be overloaded using virtual inheritance and
/// this base criterion may be called from derived, both in C++ and Python.
///
/// *Arguments*
/// r (_GenericVector_)
/// Residual for criterion evaluation.
/// nonlinear_problem (_NonlinearProblem_)
/// The nonlinear problem.
/// iteration (std::size_t)
/// Newton iteration number.
///
/// *Returns*
/// bool
/// Whether convergence occurred.
virtual bool converged(const GenericVector& r,
const NonlinearProblem& nonlinear_problem,
std::size_t iteration);
/// Setup solver to be used with system matrix A and preconditioner
/// matrix P. It may be overloaded to get finer control over linear
/// solver setup, various linesearch tricks, etc. Note that minimal
/// implementation should call *set_operators* method of the linear
/// solver.
///
/// *Arguments*
/// A (_std::shared_ptr<const GenericMatrix>_)
/// System Jacobian matrix.
/// J (_std::shared_ptr<const GenericMatrix>_)
/// System preconditioner matrix.
/// nonlinear_problem (_NonlinearProblem_)
/// The nonlinear problem.
/// iteration (std::size_t)
/// Newton iteration number.
virtual void solver_setup(std::shared_ptr<const GenericMatrix> A,
std::shared_ptr<const GenericMatrix> P,
const NonlinearProblem& nonlinear_problem,
std::size_t iteration);
/// Update solution vector by computed Newton step. Default
/// update is given by formula::
///
/// x -= relaxation_parameter*dx
///
/// *Arguments*
/// x (_GenericVector>_)
/// The solution vector to be updated.
/// dx (_GenericVector>_)
/// The update vector computed by Newton step.
/// relaxation_parameter (double)
/// Newton relaxation parameter.
/// nonlinear_problem (_NonlinearProblem_)
/// The nonlinear problem.
/// iteration (std::size_t)
/// Newton iteration number.
virtual void update_solution(GenericVector& x,
const GenericVector& dx,
double relaxation_parameter,
const NonlinearProblem& nonlinear_problem,
std::size_t iteration);
private:
// Current number of Newton iterations
std::size_t _newton_iteration;
// Accumulated number of Krylov iterations since solve began
std::size_t _krylov_iterations;
// Relaxation parameter
double _relaxation_parameter;
// Most recent residual and initial residual
double _residual, _residual0;
// Solver
std::shared_ptr<GenericLinearSolver> _solver;
// Jacobian matrix
std::shared_ptr<GenericMatrix> _matA;
// Preconditioner matrix
std::shared_ptr<GenericMatrix> _matP;
// Solution vector
std::shared_ptr<GenericVector> _dx;
// Residual vector
std::shared_ptr<GenericVector> _b;
// MPI communicator
dolfin::MPI::Comm _mpi_comm;
};
}
#endif
|