/usr/include/dune/grid-glue/common/projection.hh is in libdune-grid-glue-dev 2.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | #ifndef DUNE_GRIDGLUE_COMMON_PROJECTIONHELPER2_HH
#define DUNE_GRIDGLUE_COMMON_PROJECTIONHELPER2_HH
#include <array>
#include <bitset>
#include <tuple>
namespace Dune {
namespace GridGlue {
/**
* \brief Projection of a line (triangle) on another line (triangle).
*
* This class implements methods to project a line (2d) or triangle (3d) on
* another line (triangle) along normal field given by values at the corners.
*/
template<typename Coordinate>
class Projection
{
public:
/**
* \brief Intersection between two edges of a triangle.
*
* See also \ref Projection<Coordinate>::edgeIntersections()
*/
struct EdgeIntersection
{
/**
* \brief Edge numbers in image and preimage triangle.
*/
std::array<unsigned, 2> edge;
/**
* \brief Local coordinates of intersection and distance along normals.
*
* Local coordinate of intersection point in barycentric coordinates with
* respect to image and preimage triangle.
*/
std::array<Coordinate, 2> local;
};
/**
* \brief dimension of coordinates
*/
constexpr static unsigned dim = Coordinate::dimension;
/**
* \brief maximum number of edge-edge intersections
*
* See also \seealso edgeIntersections()
*/
constexpr static unsigned maxEdgeIntersections = dim == 3 ? 9 : 0;
static_assert(dim == 2 || dim == 3, "Projection only implemented for dim=2 or dim=3");
/**
* \brief Scalar type.
*/
typedef typename Coordinate::field_type Field;
/**
* \brief List of corner images.
*
* This type is used to return the list of images Φ(xᵢ) of the corners xᵢ
* in barycentric coordinates with respect to the image simplex.
* The last entry is used to return the (signed) distance along the normal.
*/
typedef std::array<Coordinate, dim> Images;
/**
* List of corner preimages.
*
* This is used as \ref Images, but for the preimages Φ⁻¹(yᵢ) of the corners
* yᵢ of the image simplex.
*/
typedef Images Preimages;
private:
/**
* \brief Overlap allowed for the projection to be considered valid.
*/
const Field m_overlap;
/**
* \brief Maximum value for scalar product ν(x)·ν(Φ(x)) of normals
*
* The normals at <code>x</code> and <code>Φ(x)</code> are expected
* to be opposing to some degree. This value is used to indicate
* how much they are allowed to deviate from this by ensuring that
* <code>ν(x)·ν(Φ(x)) ≤ m_max_normal_product</code>.
*/
const Field m_max_normal_product;
/**
* \brief epsilon used for floating-point comparisons.
*
* See also \seealso epsilon(Field)
*/
Field m_epsilon = Field(1e-12);
/** \copydoc images() */
std::tuple<Images, Preimages> m_images;
/** \copydoc success() */
std::tuple<std::bitset<dim>, std::bitset<dim> > m_success;
/** \copydoc numberOfEdgeIntersections() */
unsigned m_number_of_edge_intersections;
/** \copydoc edgeIntersections() */
std::array<EdgeIntersection, maxEdgeIntersections> m_edge_intersections;
/**
* \brief Forward projection successful for all corners <code>xᵢ</code>
*
* If <code>true</code>, the forward projection was successful, that is
* Φ(xᵢ) could be computed for all xᵢ.
*
* \warning Note that this only means Φ(xᵢ) lie in the plane spanned by the
* image simplex which is required to compute the inverse
* projection Φ⁻¹(yᵢ). The bitset \ref m_success should be used to
* check whether the projection is feasible.
*/
bool m_projection_valid;
/**
* \brief Compute forward projection Φ(xᵢ) for all xᵢ.
*
* \copydetails project
*/
template<typename Corners, typename Normals>
void doProjection(const std::tuple<Corners&, Corners&>& corners, const std::tuple<Normals&, Normals&>& normals);
/**
* \brief Compute inverse projection Φ⁻¹(yᵢ) for all yᵢ.
*
* \note This requires the forward projection was already computed by
* \ref doProjection.
*
* \copydetails project
*/
template<typename Corners, typename Normals>
void doInverseProjection(const std::tuple<Corners&, Corners&>& corners, const std::tuple<Normals&, Normals&>& normals);
/**
* \brief Compute intersections between projected edges and edges of the image simplex.
*
* \note This requires the forward and inverse projections were already
* computed by \ref doProjection and \ref doInverseProjection.
*
* \copydetails project
*/
template<typename Corners, typename Normals>
void doEdgeIntersection(const std::tuple<Corners&, Corners&>& corners, const std::tuple<Normals&, Normals&>& normals);
/**
* \brief Check if projection is feasible.
*
* Given a point <code>x</code>, its image <code>px</code> in barycentric
* coordinates together with the signed distance along the normal at
* <code>x</code> in the last entry of <code>px</code> and the corners and
* normals of the image simplex given in <code>corners</code> and
* <code>normals</code>, this method checks that the projection is feasible.
* This means:
*
* <ul>
* <li><code>px</code> is inside the image simplex</li>
* <li>The signed distance given is not smaller than <code>-\ref m_overlap</code></li>
* <li>The signed distance along the normal at <code>px</code> is not smaller than <code>-\ref m_overlap</li>
* <li>The angle between the normals at <code>x</code> and <code>px</code> is at least \ref m_minimum_angle_between_normals
* </ul>
*
* \param x euclidean coordinate of point to project
* \param nx outer normal ν(x) at <code>x</code>
* \param px barycentric coordinates of projected point;
* last entry is distance along normal
* \param corners corners of image simplex
* \param normals normals of image simplex
* \return <code>true</code> if the projection is feasible, <code>false</code> otherwise.
*/
template<typename Corners, typename Normals>
inline bool projectionFeasible(const Coordinate& x, const Coordinate& nx, const Coordinate& px, const Corners& corners, const Normals& normals) const;
public:
/**
* \param overlap allowed overlap
* \param max_normal_product maximum value for scalar product ν(x)·ν(Φ(x))
*/
Projection(const Field overlap = Field(0), const Field max_normal_product = Field(-0.1));
/**
* \brief Set epsilon used for floating-point comparisons.
*
* \param epsilon new epsilon used for floating-point comaprisons
*/
void epsilon(const Field epsilon);
/**
* \brief Do the actual projection.
*
* \param corners euclidean coordinates of corners of preimage and image
* \param normals normals at corners of preimage and image
* \tparam Corners list of corner coordinates, should be
* <code>std::vector<Coordinate></code> or
* <code>std::array<Coordinate, n></code>
* \tparam Normals list of corner normals, should be
* <code>std::vector<Coordinate></code> or
* <code>std::array<Coordinate, n></code>
*/
template<typename Corners, typename Normals>
void project(const std::tuple<Corners&, Corners&>& corners, const std::tuple<Normals&, Normals&>& normals);
/**
* \brief Images and preimages of corners.
*
* Returns a pair of arrays. The first array contains the images
* <code>Φ(xᵢ)</code> of the corners <code>xᵢ</code>. The second
* array contains the preimages <code>Φ⁻¹(yⱼ)</code> of the
* corners <code>yⱼ</code>.
*
* The first d-1 values are the barycentric coordinates with respect
* to the corners of the (pre)image, the last value is the signed
* distance between the projected point and its (pre)image along the
* normal at the projected preimage corner or the inverse projected
* image corner.
*
* \note \ref project() must be called before this method can be used.
*
* \returns pair of arrays giving <code>((Φ(xᵢ))ᵢ, (Φ⁻¹(yⱼ))ⱼ)</code> in barycentric coordinates
*
* \ref success()
*/
const std::tuple<Images, Preimages>& images() const
{ return m_images; }
/**
* \brief Indicate whether projection (inverse projection) is valid for each corner or not.
*
* Returns a pair of bitsets. The first bitset indicates if the projection
* <code>Φ(xᵢ)</code> is valid for each corner <code>xᵢ</code>, that is
* that <code>Φ(xᵢ)</code> could be computed and lies in the image simplex.
* The second bitset indicates the same for the inverse projection
* <code>Φ⁻¹(yⱼ)</code> for the corners <code>yⱼ</code>.
*
* \note \ref project() must be called before this method can be used.
*
* \returns pair of bitsets indicating success of (inverse) projection at
* corners <code>xᵢ</code> (<code>yⱼ</code>)
*/
const std::tuple<std::bitset<dim>, std::bitset<dim> >& success() const
{ return m_success; }
/**
* \brief Number of edge intersections.
*
* \note \ref project() must be called before this method can be used.
*
* \ref edgeIntersections()
*/
unsigned numberOfEdgeIntersections() const
{ return m_number_of_edge_intersections; }
/**
* \brief Edge-edge intersections.
*
* \note \ref project() must be called before this method can be used.
*
* \warning Only the first \ref numberOfEdgeIntersections() entries are valid
* edge intersections.
*/
const std::array<EdgeIntersection, maxEdgeIntersections>& edgeIntersections() const
{ return m_edge_intersections; }
};
} /* namespace GridGlue */
} /* namespace Dune */
#include "projection_impl.hh"
#endif
|