This file is indexed.

/usr/include/ignition/math2/ignition/math/Line2.hh is in libignition-math2-dev 2.9.0+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*
 * Copyright (C) 2014 Open Source Robotics Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
*/
#ifndef IGNITION_MATH_LINE2_HH_
#define IGNITION_MATH_LINE2_HH_

#include <algorithm>
#include <ignition/math/Vector2.hh>
#include <ignition/math/IndexException.hh>

namespace ignition
{
  namespace math
  {
    /// \class Line2 Line2.hh ignition/math/Line2.hh
    /// \brief A two dimensional line segment. The line is defined by a
    /// start and end point.
    template<typename T>
    class Line2
    {
      /// \brief Constructor.
      /// \param[in] _ptA Start point of the line segment
      /// \param[in] _ptB End point of the line segment
      public: Line2(const math::Vector2<T> &_ptA, const math::Vector2<T> &_ptB)
      {
        this->Set(_ptA, _ptB);
      }

      /// \brief Constructor.
      /// \param[in] _x1 X coordinate of the start point.
      /// \param[in] _y1 Y coordinate of the start point.
      /// \param[in] _x2 X coordinate of the end point.
      /// \param[in] _y2 Y coordinate of the end point.
      public: Line2(double _x1, double _y1, double _x2, double _y2)
      {
        this->Set(_x1, _y1, _x2, _y2);
      }

      /// \brief Set the start and end point of the line segment
      /// \param[in] _ptA Start point of the line segment
      /// \param[in] _ptB End point of the line segment
      public: void Set(const math::Vector2<T> &_ptA,
                       const math::Vector2<T> &_ptB)
      {
        this->pts[0] = _ptA;
        this->pts[1] = _ptB;
      }

      /// \brief Set the start and end point of the line segment
      /// \param[in] _x1 X coordinate of the start point.
      /// \param[in] _y1 Y coordinate of the start point.
      /// \param[in] _x2 X coordinate of the end point.
      /// \param[in] _y2 Y coordinate of the end point.
      public: void Set(double _x1, double _y1, double _x2, double _y2)
      {
        this->pts[0].Set(_x1, _y1);
        this->pts[1].Set(_x2, _y2);
      }

      /// \brief Return the cross product of this line and the given line.
      /// Give 'a' as this line and 'b' as given line, the equation is:
      /// (a.start.x - a.end.x) * (b.start.y - b.end.y) -
      /// (a.start.y - a.end.y) * (b.start.x - b.end.x)
      /// \param[in] _line Line for the cross product computation.
      /// \return Return the cross product of this line and the given line.
      public: double CrossProduct(const Line2<T> &_line) const
      {
        return (this->pts[0].X() - this->pts[1].X()) *
               (_line[0].Y() -_line[1].Y()) -
               (this->pts[0].Y() - this->pts[1].Y()) *
               (_line[0].X() - _line[1].X());
      }

      /// \brief Return the cross product of this line and the given point.
      /// Given 'a' and 'b' as the start and end points, the equation is:
      //  (_pt.y - a.y) * (b.x - a.x) - (_pt.x - a.x) * (b.y - a.y)
      /// \param[in] _pt Point for the cross product computation.
      /// \return Return the cross product of this line and the given point.
      public: double CrossProduct(const Vector2<T> &_pt) const
      {
        return (_pt.Y() - this->pts[0].Y()) *
               (this->pts[1].X() - this->pts[0].X()) -
               (_pt.X() - this->pts[0].X()) *
               (this->pts[1].Y() - this->pts[0].Y());
      }

      /// \brief Check if the given point is collinear with this line.
      /// \param[in] _pt The point to check.
      /// \param[in] _epsilon The error bounds within which the collinear
      /// check will return true.
      /// \return Return true if the point is collinear with this line, false
      /// otherwise.
      public: bool Collinear(const math::Vector2<T> &_pt,
                             double _epsilon = 1e-6) const
      {
        return math::equal(this->CrossProduct(_pt),
            static_cast<T>(0), _epsilon);
      }

      /// \brief Check if the given line is parallel with this line.
      /// \param[in] _line The line to check.
      /// \param[in] _epsilon The error bounds within which the parallel
      /// check will return true.
      /// \return Return true if the line is parallel with this line, false
      /// otherwise. Return true if either line is a point (line with zero
      /// length).
      public: bool Parallel(const math::Line2<T> &_line,
                            double _epsilon = 1e-6) const
      {
        return math::equal(this->CrossProduct(_line),
            static_cast<T>(0), _epsilon);
      }

      /// \brief Check if the given line is collinear with this line. This
      /// is the AND of Parallel and Intersect.
      /// \param[in] _line The line to check.
      /// \param[in] _epsilon The error bounds within which the collinear
      /// check will return true.
      /// \return Return true if the line is collinear with this line, false
      /// otherwise.
      public: bool Collinear(const math::Line2<T> &_line,
                             double _epsilon = 1e-6) const
      {
        return this->Parallel(_line, _epsilon) &&
               this->Intersect(_line, _epsilon);
      }

      /// \brief Return whether the given point is on this line segment.
      /// \param[in] _pt Point to check.
      /// \param[in] _epsilon The error bounds within which the OnSegment
      /// check will return true.
      /// \return True if the point is on the segement.
      public: bool OnSegment(const math::Vector2<T> &_pt,
                             double _epsilon = 1e-6) const
      {
        return this->Collinear(_pt, _epsilon) && this->Within(_pt, _epsilon);
      }

      /// \brief Check if the given point is between the start and end
      /// points of the line segment. This does not imply that the point is
      /// on the segment.
      /// \param[in] _pt Point to check.
      /// \param[in] _epsilon The error bounds within which the within
      /// check will return true.
      /// \return True if the point is on the segement.
      public: bool Within(const math::Vector2<T> &_pt,
                          double _epsilon = 1e-6) const
      {
        return _pt.X() <= std::max(this->pts[0].X(),
                                   this->pts[1].X()) + _epsilon &&
               _pt.X() >= std::min(this->pts[0].X(),
                                   this->pts[1].X()) - _epsilon &&
               _pt.Y() <= std::max(this->pts[0].Y(),
                                   this->pts[1].Y()) + _epsilon &&
               _pt.Y() >= std::min(this->pts[0].Y(),
                                   this->pts[1].Y()) - _epsilon;
      }

      /// \brief Check if this line intersects the given line segment.
      /// \param[in] _line The line to check for intersection.
      /// \param[in] _epsilon The error bounds within which the intersection
      /// check will return true.
      /// \return True if an intersection was found.
      public: bool Intersect(const Line2<T> &_line,
                             double _epsilon = 1e-6) const
      {
        static math::Vector2<T> ignore;
        return this->Intersect(_line, ignore, _epsilon);
      }

      /// \brief Check if this line intersects the given line segment. The
      /// point of intersection is returned in the _result parameter.
      /// \param[in] _line The line to check for intersection.
      /// \param[out] _pt The point of intersection. This value is only
      /// valid if the return value is true.
      /// \param[in] _epsilon The error bounds within which the intersection
      /// check will return true.
      /// \return True if an intersection was found.
      public: bool Intersect(const Line2<T> &_line, math::Vector2<T> &_pt,
                             double _epsilon = 1e-6) const
      {
        double d = this->CrossProduct(_line);

        // d is zero if the two line are collinear. Must check special
        // cases.
        if (math::equal(d, 0.0, _epsilon))
        {
          // Check if _line's starting point is on the line.
          if (this->Within(_line[0], _epsilon))
          {
            _pt = _line[0];
            return true;
          }
          // Check if _line's ending point is on the line.
          else if (this->Within(_line[1], _epsilon))
          {
            _pt = _line[1];
            return true;
          }
          // Other wise return false.
          else
            return false;
        }

        _pt.X((_line[0].X() - _line[1].X()) *
              (this->pts[0].X() * this->pts[1].Y() -
               this->pts[0].Y() * this->pts[1].X()) -
              (this->pts[0].X() - this->pts[1].X()) *
              (_line[0].X() * _line[1].Y() - _line[0].Y() * _line[1].X()));

        _pt.Y((_line[0].Y() - _line[1].Y()) *
              (this->pts[0].X() * this->pts[1].Y() -
               this->pts[0].Y() * this->pts[1].X()) -
              (this->pts[0].Y() - this->pts[1].Y()) *
              (_line[0].X() * _line[1].Y() - _line[0].Y() * _line[1].X()));

        _pt /= d;

        if (_pt.X() < std::min(this->pts[0].X(), this->pts[1].X()) ||
            _pt.X() > std::max(this->pts[0].X(), this->pts[1].X()) ||
            _pt.X() < std::min(_line[0].X(), _line[1].X()) ||
            _pt.X() > std::max(_line[0].X(), _line[1].X()))
        {
          return false;
        }

        if (_pt.Y() < std::min(this->pts[0].Y(), this->pts[1].Y()) ||
            _pt.Y() > std::max(this->pts[0].Y(), this->pts[1].Y()) ||
            _pt.Y() < std::min(_line[0].Y(), _line[1].Y()) ||
            _pt.Y() > std::max(_line[0].Y(), _line[1].Y()))
        {
          return false;
        }

        return true;
      }

      /// \brief Get the length of the line
      /// \return The length of the line.
      public: T Length() const
      {
        return sqrt((this->pts[0].X() - this->pts[1].X()) *
                    (this->pts[0].X() - this->pts[1].X()) +
                    (this->pts[0].Y() - this->pts[1].Y()) *
                    (this->pts[0].Y() - this->pts[1].Y()));
      }

      /// \brief Get the slope of the line
      /// \return The slope of the line, NAN_D if the line is vertical.
      public: double Slope() const
      {
        if (math::equal(this->pts[1].X(), this->pts[0].X()))
          return NAN_D;

        return (this->pts[1].Y() - this->pts[0].Y()) /
               static_cast<double>(this->pts[1].X() - this->pts[0].X());
      }

      /// \brief Equality operator.
      /// \param[in] _line Line to compare for equality.
      /// \return True if the given line is equal to this line
      public: bool operator==(const Line2<T> &_line) const
      {
        return this->pts[0] == _line[0] && this->pts[1] == _line[1];
      }

      /// \brief Inequality operator.
      /// \param[in] _line Line to compare for inequality.
      /// \return True if the given line is not to this line
      public: bool operator!=(const Line2<T> &_line) const
      {
        return !(*this == _line);
      }

      /// \brief Get the start or end point.
      /// \param[in] _index 0 = start point, 1 = end point.
      /// \throws IndexException if _index is > 1.
      public: math::Vector2<T> operator[](size_t _index) const
      {
        if (_index > 1)
          throw IndexException();
        return this->pts[_index];
      }

      /// \brief Stream extraction operator
      /// \param[in] _out output stream
      /// \param[in] _pt Line2 to output
      /// \return The stream
      /// \throws N/A.
      public: friend std::ostream &operator<<(
                  std::ostream &_out, const Line2<T> &_line)
      {
        _out << _line[0] << " " << _line[1];
        return _out;
      }

      private: math::Vector2<T> pts[2];
    };


    typedef Line2<int> Line2i;
    typedef Line2<double> Line2d;
    typedef Line2<float> Line2f;
  }
}
#endif