This file is indexed.

/usr/include/ignition/math2/ignition/math/Line3.hh is in libignition-math2-dev 2.9.0+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
/*
 * Copyright (C) 2015 Open Source Robotics Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
*/
#ifndef IGNITION_MATH_LINE3_HH_
#define IGNITION_MATH_LINE3_HH_

#include <algorithm>
#include <ignition/math/Vector3.hh>
#include <ignition/math/IndexException.hh>

namespace ignition
{
  namespace math
  {
    /// \class Line3 Line3.hh ignition/math/Line3.hh
    /// \brief A three dimensional line segment. The line is defined by a
    /// start and end point.
    template<typename T>
    class Line3
    {
      /// \brief Line Constructor
      public: Line3() = default;

      /// \brief Copy constructor
      /// \param[in] _line a line object
      public: Line3(const Line3<T> &_line)
      {
        this->pts[0] = _line[0];
        this->pts[1] = _line[1];
      }

      /// \brief Constructor.
      /// \param[in] _ptA Start point of the line segment
      /// \param[in] _ptB End point of the line segment
      public: Line3(const math::Vector3<T> &_ptA, const math::Vector3<T> &_ptB)
      {
        this->Set(_ptA, _ptB);
      }

      /// \brief 2D Constructor where Z coordinates are 0
      /// \param[in] _x1 X coordinate of the start point.
      /// \param[in] _y1 Y coordinate of the start point.
      /// \param[in] _x2 X coordinate of the end point.
      /// \param[in] _y2 Y coordinate of the end point.
      public: Line3(const double _x1, const double _y1,
        const double _x2, const double _y2)
      {
        this->Set(_x1, _y1, _x2, _y2);
      }

      /// \brief Constructor.
      /// \param[in] _x1 X coordinate of the start point.
      /// \param[in] _y1 Y coordinate of the start point.
      /// \param[in] _z1 Z coordinate of the start point.
      /// \param[in] _x2 X coordinate of the end point.
      /// \param[in] _y2 Y coordinate of the end point.
      /// \param[in] _z2 Z coordinate of the end point.
      public: Line3(const double _x1, const double _y1,
        const double _z1, const double _x2,
        const double _y2, const double _z2)
      {
        this->Set(_x1, _y1, _z1, _x2, _y2, _z2);
      }

      /// \brief Set the start and end point of the line segment
      /// \param[in] _ptA Start point of the line segment
      /// \param[in] _ptB End point of the line segment
      public: void Set(const math::Vector3<T> &_ptA,
                       const math::Vector3<T> &_ptB)
      {
        this->pts[0] = _ptA;
        this->pts[1] = _ptB;
      }

      /// \brief Set the start point of the line segment
      /// \param[in] _ptA Start point of the line segment
      public: void SetA(const math::Vector3<T> &_ptA)
      {
        this->pts[0] = _ptA;
      }

      /// \brief Set the end point of the line segment
      /// \param[in] _ptB End point of the line segment
      public: void SetB(const math::Vector3<T> &_ptB)
      {
        this->pts[1] = _ptB;
      }

      /// \brief Set the start and end point of the line segment, assuming that
      /// both points have the same height.
      /// \param[in] _x1 X coordinate of the start point.
      /// \param[in] _y1 Y coordinate of the start point.
      /// \param[in] _x2 X coordinate of the end point.
      /// \param[in] _y2 Y coordinate of the end point.
      /// \param[in] _z Z coordinate of both points,
      /// by default _z is set to 0.
      public: void Set(const double _x1, const double _y1,
        const double _x2, const double _y2,
        const double _z = 0)
      {
        this->pts[0].Set(_x1, _y1, _z);
        this->pts[1].Set(_x2, _y2, _z);
      }

      /// \brief Set the start and end point of the line segment
      /// \param[in] _x1 X coordinate of the start point.
      /// \param[in] _y1 Y coordinate of the start point.
      /// \param[in] _z1 Z coordinate of the start point.
      /// \param[in] _x2 X coordinate of the end point.
      /// \param[in] _y2 Y coordinate of the end point.
      /// \param[in] _z2 Z coordinate of the end point.
      public: void Set(const double _x1, const double _y1,
        const double _z1, const double _x2,
        const double _y2, const double _z2)
      {
        this->pts[0].Set(_x1, _y1, _z1);
        this->pts[1].Set(_x2, _y2, _z2);
      }

      /// \brief Get the direction of the line
      /// \return The direction vector
      public: math::Vector3<T> Direction() const
      {
        return (this->pts[1] - this->pts[0]).Normalize();
      }

      /// \brief Get the length of the line
      /// \return The length of the line.
      public: T Length() const
      {
        return this->pts[0].Distance(this->pts[1]);
      }

      /// \brief Get the shortest line between this line and the
      /// provided line.
      ///
      /// In the case when the two lines are parallel, we choose the first
      /// point of this line and the closest point in the provided line.
      /// \param[in] _line Line to compare against this.
      /// \param[out] _result The shortest line between _line and this.
      /// \return True if a solution was found. False if a solution is not
      /// possible.
      public: bool Distance(const Line3<T> &_line, Line3<T> &_result,
                            const double _epsilon = 1e-6) const
      {
        Vector3<T> p13 = this->pts[0] - _line[0];
        Vector3<T> p43 = _line[1] - _line[0];

        if (std::abs(p43.X()) < _epsilon && std::abs(p43.Y()) < _epsilon &&
            std::abs(p43.Z()) < _epsilon)
        {
          return false;
        }

        Vector3<T> p21 = this->pts[1] - this->pts[0];

        if (std::abs(p21.X()) < _epsilon && std::abs(p21.Y()) < _epsilon &&
            std::abs(p21.Z()) < _epsilon)
        {
          return false;
        }

        double d1343 = p13.Dot(p43);
        double d4321 = p43.Dot(p21);
        double d1321 = p13.Dot(p21);
        double d4343 = p43.Dot(p43);
        double d2121 = p21.Dot(p21);

        double denom = d2121 * d4343 - d4321 * d4321;

        // In this case, we choose the first point in this line,
        // and the closest point in the provided line.
        if (std::abs(denom) < _epsilon)
        {
          double d1 = this->pts[0].Distance(_line[0]);
          double d2 = this->pts[0].Distance(_line[1]);

          double d3 = this->pts[1].Distance(_line[0]);
          double d4 = this->pts[1].Distance(_line[1]);

          if (d1 <= d2 && d1 <= d3 && d1 <= d4)
          {
            _result.SetA(this->pts[0]);
            _result.SetB(_line[0]);
          }
          else if (d2 <= d3 && d2 <= d4)
          {
            _result.SetA(this->pts[0]);
            _result.SetB(_line[1]);
          }
          else if (d3 <= d4)
          {
            _result.SetA(this->pts[1]);
            _result.SetB(_line[0]);
          }
          else
          {
            _result.SetA(this->pts[1]);
            _result.SetB(_line[1]);
          }

          return true;
        }

        double numer = d1343 * d4321 - d1321 * d4343;

        double mua = clamp(numer / denom, 0.0, 1.0);
        double mub = clamp((d1343 + d4321 * mua) / d4343, 0.0, 1.0);

        _result.Set(this->pts[0] + (p21 * mua), _line[0] + (p43 * mub));

        return true;
      }

      /// \brief Check if this line intersects the given line segment.
      /// \param[in] _line The line to check for intersection.
      /// \param[in] _epsilon The error bounds within which the intersection
      /// check will return true.
      /// \return True if an intersection was found.
      public: bool Intersect(const Line3<T> &_line,
                             double _epsilon = 1e-6) const
      {
        static math::Vector3<T> ignore;
        return this->Intersect(_line, ignore, _epsilon);
      }

      /// \brief Test if this line and the given line are coplanar.
      /// \param[in] _line Line to check against.
      /// \param[in] _epsilon The error bounds within which the
      /// check will return true.
      /// \return True if the two lines are coplanar.
      public: bool Coplanar(const Line3<T> &_line,
                            const double _epsilon = 1e-6) const
      {
        return std::abs((_line[0] - this->pts[0]).Dot(
              (this->pts[1] - this->pts[0]).Cross(_line[1] - _line[0])))
          <= _epsilon;
      }

      /// \brief Test if this line and the given line are parallel.
      /// \param[in] _line Line to check against.
      /// \param[in] _epsilon The error bounds within which the
      /// check will return true.
      /// \return True if the two lines are parallel.
      public: bool Parallel(const Line3<T> &_line,
                            const double _epsilon = 1e-6) const
      {
        return (this->pts[1] - this->pts[0]).Cross(
            _line[1] - _line[0]).Length() <= _epsilon;
      }

      /// \brief Check if this line intersects the given line segment. The
      /// point of intersection is returned in the _pt parameter.
      /// \param[in] _line The line to check for intersection.
      /// \param[out] _pt The point of intersection. This value is only
      /// valid if the return value is true.
      /// \param[in] _epsilon The error bounds within which the intersection
      /// check will return true.
      /// \return True if an intersection was found.
      public: bool Intersect(const Line3<T> &_line, math::Vector3<T> &_pt,
                             double _epsilon = 1e-6) const
      {
        // Handle special case when lines are parallel
        if (this->Parallel(_line, _epsilon))
        {
          // Check if _line's starting point is on the line.
          if (this->Within(_line[0], _epsilon))
          {
            _pt = _line[0];
            return true;
          }
          // Check if _line's ending point is on the line.
          else if (this->Within(_line[1], _epsilon))
          {
            _pt = _line[1];
            return true;
          }
          // Otherwise return false.
          else
            return false;
        }

        // Get the line that is the shortest distance between this and _line
        math::Line3<T> distLine;
        this->Distance(_line, distLine, _epsilon);

        // If the length of the line is less than epsilon, then they
        // intersect.
        if (distLine.Length() < _epsilon)
        {
          _pt = distLine[0];
          return true;
        }

        return false;
      }

      /// \brief Check if the given point is between the start and end
      /// points of the line segment.
      /// \param[in] _pt Point to check.
      /// \param[in] _epsilon The error bounds within which the within
      /// check will return true.
      /// \return True if the point is on the segement.
      public: bool Within(const math::Vector3<T> &_pt,
                          double _epsilon = 1e-6) const
      {
        return _pt.X() <= std::max(this->pts[0].X(),
                                   this->pts[1].X()) + _epsilon &&
               _pt.X() >= std::min(this->pts[0].X(),
                                   this->pts[1].X()) - _epsilon &&
               _pt.Y() <= std::max(this->pts[0].Y(),
                                   this->pts[1].Y()) + _epsilon &&
               _pt.Y() >= std::min(this->pts[0].Y(),
                                   this->pts[1].Y()) - _epsilon &&
               _pt.Z() <= std::max(this->pts[0].Z(),
                                   this->pts[1].Z()) + _epsilon &&
               _pt.Z() >= std::min(this->pts[0].Z(),
                                   this->pts[1].Z()) - _epsilon;
      }

      /// \brief Equality operator.
      /// \param[in] _line Line to compare for equality.
      /// \return True if the given line is equal to this line
      public: bool operator==(const Line3<T> &_line) const
      {
        return this->pts[0] == _line[0] && this->pts[1] == _line[1];
      }

      /// \brief Inequality operator.
      /// \param[in] _line Line to compare for inequality.
      /// \return True if the given line is not to this line
      public: bool operator!=(const Line3<T> &_line) const
      {
        return !(*this == _line);
      }

      /// \brief Get the start or end point.
      /// \param[in] _index 0 = start point, 1 = end point.
      /// \throws IndexException if _index is > 1.
      public: math::Vector3<T> operator[](const size_t _index) const
      {
        if (_index > 1)
          throw IndexException();
        return this->pts[_index];
      }

      /// \brief Stream extraction operator
      /// \param[in] _out output stream
      /// \param[in] _line Line3 to output
      /// \return The stream
      public: friend std::ostream &operator<<(
                  std::ostream &_out, const Line3<T> &_line)
      {
        _out << _line[0] << " " << _line[1];
        return _out;
      }

      /// \brief Assignment operator
      /// \param[in] _line a new value
      /// \return this
      public: Line3 &operator=(const Line3<T> &_line)
      {
        this->pts[0] = _line[0];
        this->pts[1] = _line[1];

        return *this;
      }

      /// \brief Vector for storing the start and end points of the line
      private: math::Vector3<T> pts[2];
    };

    typedef Line3<int> Line3i;
    typedef Line3<double> Line3d;
    typedef Line3<float> Line3f;
  }
}
#endif