/usr/include/kido/math/Geometry.hpp is in libkido-dev 0.1.0+dfsg-2build9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | /*
* Copyright (c) 2011-2015, Georgia Tech Research Corporation
* All rights reserved.
*
* Author(s): Sehoon Ha <sehoon.ha@gmail.com>,
* Jeongseok Lee <jslee02@gmail.com>
*
* Georgia Tech Graphics Lab and Humanoid Robotics Lab
*
* Directed by Prof. C. Karen Liu and Prof. Mike Stilman
* <karenliu@cc.gatech.edu> <mstilman@cc.gatech.edu>
*
* This file is provided under the following "BSD-style" License:
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef KIDO_MATH_GEOMETRY_HPP_
#define KIDO_MATH_GEOMETRY_HPP_
#include <Eigen/Dense>
#include "kido/common/Deprecated.hpp"
#include "kido/math/MathTypes.hpp"
namespace kido {
namespace math {
/// \brief
Eigen::Matrix3d makeSkewSymmetric(const Eigen::Vector3d& _v);
/// \brief
Eigen::Vector3d fromSkewSymmetric(const Eigen::Matrix3d& _m);
//------------------------------------------------------------------------------
/// \brief
Eigen::Quaterniond expToQuat(const Eigen::Vector3d& _v);
/// \brief
Eigen::Vector3d quatToExp(const Eigen::Quaterniond& _q);
/// \brief
Eigen::Vector3d rotatePoint(const Eigen::Quaterniond& _q,
const Eigen::Vector3d& _pt);
/// \brief
Eigen::Vector3d rotatePoint(const Eigen::Quaterniond& _q,
double _x, double _y, double _z);
/// \brief
Eigen::Matrix3d quatDeriv(const Eigen::Quaterniond& _q, int _el);
/// \brief
Eigen::Matrix3d quatSecondDeriv(const Eigen::Quaterniond& _q,
int _el1, int _el2);
//------------------------------------------------------------------------------
/// \brief Get a transformation matrix given by the Euler XYX angle.
Eigen::Matrix3d eulerXYXToMatrix(const Eigen::Vector3d& _angle);
/// \brief Get a transformation matrix given by the Euler XYZ angle.
Eigen::Matrix3d eulerXYZToMatrix(const Eigen::Vector3d& _angle);
/// \brief Get a transformation matrix given by the Euler XZX angle.
Eigen::Matrix3d eulerXZXToMatrix(const Eigen::Vector3d& _angle);
/// \brief Get a transformation matrix given by the Euler XZY angle.
Eigen::Matrix3d eulerXZYToMatrix(const Eigen::Vector3d& _angle);
/// \brief Get a transformation matrix given by the Euler YXY angle.
Eigen::Matrix3d eulerYXYToMatrix(const Eigen::Vector3d& _angle);
/// \brief Get a transformation matrix given by the Euler YXZ angle.
Eigen::Matrix3d eulerYXZToMatrix(const Eigen::Vector3d& _angle);
/// \brief Get a transformation matrix given by the Euler YZX angle.
Eigen::Matrix3d eulerYZXToMatrix(const Eigen::Vector3d& _angle);
/// \brief Get a transformation matrix given by the Euler YZY angle.
Eigen::Matrix3d eulerYZYToMatrix(const Eigen::Vector3d& _angle);
/// \brief Get a transformation matrix given by the Euler ZXY angle.
Eigen::Matrix3d eulerZXYToMatrix(const Eigen::Vector3d& _angle);
/// \brief get a transformation matrix given by the Euler ZYX angle,
/// singularity : angle[1] = -+ 0.5*PI
Eigen::Matrix3d eulerZYXToMatrix(const Eigen::Vector3d& _angle);
/// \brief Get a transformation matrix given by the Euler ZXZ angle.
Eigen::Matrix3d eulerZXZToMatrix(const Eigen::Vector3d& _angle);
/// \brief Get a transformation matrix given by the Euler ZYZ angle,
/// singularity : angle[1] = 0, PI
Eigen::Matrix3d eulerZYZToMatrix(const Eigen::Vector3d& _angle);
//------------------------------------------------------------------------------
/// \brief get the Euler XYX angle from R
Eigen::Vector3d matrixToEulerXYX(const Eigen::Matrix3d& _R);
/// \brief get the Euler XYZ angle from R
Eigen::Vector3d matrixToEulerXYZ(const Eigen::Matrix3d& _R);
///// \brief get the Euler XZX angle from R
// Eigen::Vector3d matrixToEulerXZX(const Eigen::Matrix3d& R);
/// \brief get the Euler XZY angle from R
Eigen::Vector3d matrixToEulerXZY(const Eigen::Matrix3d& _R);
///// \brief get the Euler YXY angle from R
// Eigen::Vector3d matrixToEulerYXY(const Eigen::Matrix3d& R);
/// \brief get the Euler YXZ angle from R
Eigen::Vector3d matrixToEulerYXZ(const Eigen::Matrix3d& _R);
/// \brief get the Euler YZX angle from R
Eigen::Vector3d matrixToEulerYZX(const Eigen::Matrix3d& _R);
///// \brief get the Euler YZY angle from R
// Eigen::Vector3d matrixToEulerYZY(const Eigen::Matrix3d& R);
/// \brief get the Euler ZXY angle from R
Eigen::Vector3d matrixToEulerZXY(const Eigen::Matrix3d& _R);
/// \brief get the Euler ZYX angle from R
Eigen::Vector3d matrixToEulerZYX(const Eigen::Matrix3d& _R);
///// \brief get the Euler ZXZ angle from R
// Eigen::Vector3d matrixToEulerZXZ(const Eigen::Matrix3d& R);
///// \brief get the Euler ZYZ angle from R
// Eigen::Vector3d matrixToEulerZYZ(const Eigen::Matrix3d& R);
//------------------------------------------------------------------------------
/// \brief Exponential mapping
Eigen::Isometry3d expMap(const Eigen::Vector6d& _S);
/// \brief fast version of Exp(se3(s, 0))
/// \todo This expAngular() can be replaced by Eigen::AngleAxis() but we need
/// to verify that they have exactly same functionality.
/// See: https://github.com/kidosim/kido/issues/88
Eigen::Isometry3d expAngular(const Eigen::Vector3d& _s);
/// \brief Computes the Rotation matrix from a given expmap vector.
Eigen::Matrix3d expMapRot(const Eigen::Vector3d& _expmap);
/// \brief Computes the Jacobian of the expmap
Eigen::Matrix3d expMapJac(const Eigen::Vector3d& _expmap);
/// \brief Computes the time derivative of the expmap Jacobian.
Eigen::Matrix3d expMapJacDot(const Eigen::Vector3d& _expmap,
const Eigen::Vector3d& _qdot);
/// \brief computes the derivative of the Jacobian of the expmap wrt to _qi
/// indexed dof; _qi \in {0,1,2}
Eigen::Matrix3d expMapJacDeriv(const Eigen::Vector3d& _expmap, int _qi);
/// \brief Log mapping
/// \note When @f$|Log(R)| = @pi@f$, Exp(LogR(R) = Exp(-Log(R)).
/// The implementation returns only the positive one.
Eigen::Vector3d logMap(const Eigen::Matrix3d& _R);
/// \brief Log mapping
Eigen::Vector6d logMap(const Eigen::Isometry3d& _T);
//------------------------------------------------------------------------------
/// \brief Rectify the rotation part so as that it satifies the orthogonality
/// condition.
///
/// It is one step of @f$R_{i_1}=1/2(R_i + R_i^{-T})@f$.
/// Hence by calling this function iterativley, you can make the rotation part
/// closer to SO(3).
// SE3 Normalize(const SE3& T);
/// \brief reparameterize such as ||s'|| < M_PI and Exp(s) == Epx(s')
// Axis Reparameterize(const Axis& s);
//------------------------------------------------------------------------------
/// \brief adjoint mapping
/// \note @f$Ad_TV = ( Rw@,, ~p @times Rw + Rv)@f$,
/// where @f$T=(R,p)@in SE(3), @quad V=(w,v)@in se(3) @f$.
Eigen::Vector6d AdT(const Eigen::Isometry3d& _T, const Eigen::Vector6d& _V);
/// \brief Get linear transformation matrix of Adjoint mapping
Eigen::Matrix6d getAdTMatrix(const Eigen::Isometry3d& T);
/// Adjoint mapping for dynamic size Jacobian
template<typename Derived>
typename Derived::PlainObject AdTJac(const Eigen::Isometry3d& _T,
const Eigen::MatrixBase<Derived>& _J)
{
// Check the number of rows is 6 at compile time
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime == 6,
THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE);
typename Derived::PlainObject ret(_J.rows(), _J.cols());
// Compute AdT column by column
for (int i = 0; i < _J.cols(); ++i)
ret.col(i) = AdT(_T, _J.col(i));
return ret;
}
/// Adjoint mapping for fixed size Jacobian
template<typename Derived>
typename Derived::PlainObject AdTJacFixed(const Eigen::Isometry3d& _T,
const Eigen::MatrixBase<Derived>& _J)
{
// Check if _J is fixed size Jacobian
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived);
// Check the number of rows is 6 at compile time
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime == 6,
THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE);
typename Derived::PlainObject ret(_J.rows(), _J.cols());
// Compute AdT
ret.template topRows<3>().noalias() = _T.linear() * _J.template topRows<3>();
ret.template bottomRows<3>().noalias()
= -ret.template topRows<3>().colwise().cross(_T.translation())
+ _T.linear() * _J.template bottomRows<3>();
return ret;
}
/// \brief Fast version of Ad([R 0; 0 1], V)
Eigen::Vector6d AdR(const Eigen::Isometry3d& _T, const Eigen::Vector6d& _V);
/// \brief fast version of Ad(T, se3(w, 0))
Eigen::Vector6d AdTAngular(const Eigen::Isometry3d& _T,
const Eigen::Vector3d& _w);
/// \brief fast version of Ad(T, se3(0, v))
Eigen::Vector6d AdTLinear(const Eigen::Isometry3d& _T,
const Eigen::Vector3d& _v);
///// \brief fast version of Ad([I p; 0 1], V)
// se3 AdP(const Vec3& p, const se3& s);
/// \brief Change coordinate Frame of a Jacobian
template<typename Derived>
typename Derived::PlainObject AdRJac(const Eigen::Isometry3d& _T,
const Eigen::MatrixBase<Derived>& _J)
{
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime == 6,
THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE);
typename Derived::PlainObject ret(_J.rows(), _J.cols());
ret.template topRows<3>().noalias() =
_T.linear() * _J.template topRows<3>();
ret.template bottomRows<3>().noalias() =
_T.linear() * _J.template bottomRows<3>();
return ret;
}
template<typename Derived>
typename Derived::PlainObject AdRInvJac(const Eigen::Isometry3d& _T,
const Eigen::MatrixBase<Derived>& _J)
{
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime == 6,
THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE);
typename Derived::PlainObject ret(_J.rows(), _J.cols());
ret.template topRows<3>().noalias() =
_T.linear().transpose() * _J.template topRows<3>();
ret.template bottomRows<3>().noalias() =
_T.linear().transpose() * _J.template bottomRows<3>();
return ret;
}
template<typename Derived>
typename Derived::PlainObject adJac(const Eigen::Vector6d& _V,
const Eigen::MatrixBase<Derived>& _J)
{
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime == 6,
THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE);
typename Derived::PlainObject ret(_J.rows(), _J.cols());
ret.template topRows<3>().noalias() =
- _J.template topRows<3>().colwise().cross(_V.head<3>());
ret.template bottomRows<3>().noalias() =
- _J.template bottomRows<3>().colwise().cross(_V.head<3>())
- _J.template topRows<3>().colwise().cross(_V.tail<3>());
return ret;
}
/// \brief fast version of Ad(Inv(T), V)
Eigen::Vector6d AdInvT(const Eigen::Isometry3d& _T, const Eigen::Vector6d& _V);
/// Adjoint mapping for dynamic size Jacobian
template<typename Derived>
typename Derived::PlainObject AdInvTJac(const Eigen::Isometry3d& _T,
const Eigen::MatrixBase<Derived>& _J)
{
// Check the number of rows is 6 at compile time
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime == 6,
THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE);
typename Derived::PlainObject ret(_J.rows(), _J.cols());
// Compute AdInvT column by column
for (int i = 0; i < _J.cols(); ++i)
ret.col(i) = AdInvT(_T, _J.col(i));
return ret;
}
/// Adjoint mapping for fixed size Jacobian
template<typename Derived>
typename Derived::PlainObject AdInvTJacFixed(
const Eigen::Isometry3d& _T,
const Eigen::MatrixBase<Derived>& _J)
{
// Check if _J is fixed size Jacobian
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived);
// Check the number of rows is 6 at compile time
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime == 6,
THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE);
typename Derived::PlainObject ret(_J.rows(), _J.cols());
// Compute AdInvT
ret.template topRows<3>().noalias()
= _T.linear().transpose() * _J.template topRows<3>();
ret.template bottomRows<3>().noalias()
= _T.linear().transpose()
* (_J.template bottomRows<3>()
+ _J.template topRows<3>().colwise().cross(_T.translation()));
return ret;
}
///// \brief fast version of Ad(Inv(T), se3(Eigen_Vec3(0), v))
// Eigen::Vector3d AdInvTLinear(const Eigen::Isometry3d& T,
// const Eigen::Vector3d& v);
///// \brief fast version of Ad(Inv(T), se3(w, Eigen_Vec3(0)))
// Axis AdInvTAngular(const SE3& T, const Axis& w);
///// \brief Fast version of Ad(Inv([R 0; 0 1]), V)
// se3 AdInvR(const SE3& T, const se3& V);
/// \brief Fast version of Ad(Inv([R 0; 0 1]), se3(0, v))
Eigen::Vector6d AdInvRLinear(const Eigen::Isometry3d& _T,
const Eigen::Vector3d& _v);
/// \brief dual adjoint mapping
/// \note @f$Ad^{@,*}_TF = ( R^T (m - p@times f)@,,~ R^T f)@f$,
/// where @f$T=(R,p)@in SE(3), F=(m,f)@in se(3)^*@f$.
Eigen::Vector6d dAdT(const Eigen::Isometry3d& _T, const Eigen::Vector6d& _F);
///// \brief fast version of Ad(Inv(T), dse3(Eigen_Vec3(0), F))
// dse3 dAdTLinear(const SE3& T, const Vec3& F);
/// \brief fast version of dAd(Inv(T), F)
Eigen::Vector6d dAdInvT(const Eigen::Isometry3d& _T, const Eigen::Vector6d& _F);
/// \brief fast version of dAd(Inv([R 0; 0 1]), F)
Eigen::Vector6d dAdInvR(const Eigen::Isometry3d& _T, const Eigen::Vector6d& _F);
///// \brief fast version of dAd(Inv(SE3(p)), dse3(Eigen_Vec3(0), F))
// dse3 dAdInvPLinear(const Vec3& p, const Vec3& F);
/// \brief adjoint mapping
/// \note @f$ad_X Y = ( w_X @times w_Y@,,~w_X @times v_Y - w_Y @times v_X),@f$,
/// where @f$X=(w_X,v_X)@in se(3), @quad Y=(w_Y,v_Y)@in se(3) @f$.
Eigen::Vector6d ad(const Eigen::Vector6d& _X, const Eigen::Vector6d& _Y);
/// \brief fast version of ad(se3(Eigen_Vec3(0), v), S)
// Vec3 ad_Vec3_se3(const Vec3& v, const se3& S);
/// \brief fast version of ad(se3(w, 0), se3(v, 0)) -> check
// Axis ad_Axis_Axis(const Axis& w, const Axis& v);
/// \brief dual adjoint mapping
/// \note @f$ad^{@,*}_V F = (m @times w + f @times v@,,~ f @times w),@f$
/// , where @f$F=(m,f)@in se^{@,*}(3), @quad V=(w,v)@in se(3) @f$.
Eigen::Vector6d dad(const Eigen::Vector6d& _s, const Eigen::Vector6d& _t);
/// \brief
Inertia transformInertia(const Eigen::Isometry3d& _T, const Inertia& _AI);
/// Use the Parallel Axis Theorem to compute the moment of inertia of a body
/// whose center of mass has been shifted from the origin
Eigen::Matrix3d parallelAxisTheorem(const Eigen::Matrix3d& _original,
const Eigen::Vector3d& _comShift,
double _mass);
enum AxisType
{
AXIS_X = 0,
AXIS_Y = 1,
AXIS_Z = 2
};
/// Compute a rotation matrix from a vector. One axis of the rotated coordinates
/// by the rotation matrix matches the input axis where the axis is specified
/// by axisType.
Eigen::Matrix3d computeRotation(const Eigen::Vector3d& axis,
AxisType axisType = AxisType::AXIS_X);
/// Compute a transform from a vector and a position. The rotation of the result
/// transform is computed by computeRotationMatrix(), and the translation is
/// just the input translation.
Eigen::Isometry3d computeTransform(const Eigen::Vector3d& axis,
const Eigen::Vector3d& translation,
AxisType axisType = AxisType::AXIS_X);
/// Generate frame given origin and z-axis
DEPRECATED(6.0)
Eigen::Isometry3d getFrameOriginAxisZ(const Eigen::Vector3d& _origin,
const Eigen::Vector3d& _axisZ);
/// \brief Check if determinant of _R is equat to 1 and all the elements are not
/// NaN values.
bool verifyRotation(const Eigen::Matrix3d& _R);
/// \brief Check if determinant of the rotational part of _T is equat to 1 and
/// all the elements are not NaN values.
bool verifyTransform(const Eigen::Isometry3d& _T);
/// Compute the angle (in the range of -pi to +pi) which ignores any full
/// rotations
inline double wrapToPi(double angle)
{
return std::fmod(angle+M_PI, 2*M_PI) - M_PI;
}
template <typename MatrixType, typename ReturnType>
void extractNullSpace(const Eigen::JacobiSVD<MatrixType>& _SVD, ReturnType& _NS)
{
int rank = 0;
// TODO(MXG): Replace this with _SVD.rank() once the latest Eigen is released
if(_SVD.nonzeroSingularValues() > 0)
{
double thresh = std::max(_SVD.singularValues().coeff(0)*1e-10,
std::numeric_limits<double>::min());
int i = _SVD.nonzeroSingularValues()-1;
while( i >= 0 && _SVD.singularValues().coeff(i) < thresh )
--i;
rank = i+1;
}
int cols = _SVD.matrixV().cols(), rows = _SVD.matrixV().rows();
_NS = _SVD.matrixV().block(0, rank, rows, cols-rank);
}
template <typename MatrixType, typename ReturnType>
void computeNullSpace(const MatrixType& _M, ReturnType& _NS)
{
Eigen::JacobiSVD<MatrixType> svd(_M, Eigen::ComputeFullV);
extractNullSpace(svd, _NS);
}
typedef std::vector<Eigen::Vector3d> SupportGeometry;
typedef Eigen::aligned_vector<Eigen::Vector2d> SupportPolygon;
/// Project the support geometry points onto a plane with the given axes
/// and then compute their convex hull, which will take the form of a polgyon.
/// _axis1 and _axis2 must both have unit length for this function to work
/// correctly.
SupportPolygon computeSupportPolgyon(
const SupportGeometry& _geometry,
const Eigen::Vector3d& _axis1 = Eigen::Vector3d::UnitX(),
const Eigen::Vector3d& _axis2 = Eigen::Vector3d::UnitY());
/// Same as computeSupportPolgyon, except you can pass in a std::vector<size_t>
/// which will have the same size as the returned SupportPolygon, and each entry
/// will contain the original index of each point in the SupportPolygon
SupportPolygon computeSupportPolgyon(
std::vector<size_t>& _originalIndices,
const SupportGeometry& _geometry,
const Eigen::Vector3d& _axis1 = Eigen::Vector3d::UnitX(),
const Eigen::Vector3d& _axis2 = Eigen::Vector3d::UnitY());
/// Computes the convex hull of a set of 2D points
SupportPolygon computeConvexHull(const SupportPolygon& _points);
/// Computes the convex hull of a set of 2D points and fills in _originalIndices
/// with the original index of each entry in the returned SupportPolygon
SupportPolygon computeConvexHull(std::vector<size_t>& _originalIndices,
const SupportPolygon& _points);
/// Compute the centroid of a polygon, assuming the polygon is a convex hull
Eigen::Vector2d computeCentroidOfHull(const SupportPolygon& _convexHull);
/// Intersection_t is returned by the computeIntersection() function to indicate
/// whether there was a valid intersection between the two line segments
enum Intersection_t {
INTERSECTING = 0, ///< An intersection was found
PARALLEL, ///< The line segments are parallel
BEYOND_ENDPOINTS ///< There is no intersection because the end points do not expand far enough
};
/// Compute the intersection between a line segment that goes from a1 -> a2 and
/// a line segment that goes from b1 -> b2.
Intersection_t computeIntersection(Eigen::Vector2d& _intersectionPoint,
const Eigen::Vector2d& a1,
const Eigen::Vector2d& a2,
const Eigen::Vector2d& b1,
const Eigen::Vector2d& b2);
/// Compute a 2D cross product
double cross(const Eigen::Vector2d& _v1, const Eigen::Vector2d& _v2);
/// Returns true if the point _p is inside the support polygon
bool isInsideSupportPolygon(const Eigen::Vector2d& _p,
const SupportPolygon& _support,
bool _includeEdge = true);
/// Returns the point which is closest to _p that also lays on the line segment
/// that goes from _s1 -> _s2
Eigen::Vector2d computeClosestPointOnLineSegment(const Eigen::Vector2d& _p,
const Eigen::Vector2d& _s1,
const Eigen::Vector2d& _s2);
/// Returns the point which is closest to _p that also lays on the edge of the
/// support polygon
Eigen::Vector2d computeClosestPointOnSupportPolygon(
const Eigen::Vector2d& _p,
const SupportPolygon& _support);
/// Same as closestPointOnSupportPolygon, but also fills in _index1 and _index2
/// with the indices of the line segment
Eigen::Vector2d computeClosestPointOnSupportPolygon(
size_t& _index1,
size_t& _index2,
const Eigen::Vector2d& _p,
const SupportPolygon& _support);
// Represents a bounding box with minimum and maximum coordinates.
class BoundingBox {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
BoundingBox();
BoundingBox(const Eigen::Vector3d& min, const Eigen::Vector3d& max);
inline const Eigen::Vector3d& getMin() const { return mMin; }
inline const Eigen::Vector3d& getMax() const { return mMax; }
inline void setMin(const Eigen::Vector3d& min) { mMin = min; }
inline void setMax(const Eigen::Vector3d& max) { mMax = max; }
// \brief Centroid of the bounding box (i.e average of min and max)
inline Eigen::Vector3d computeCenter() const { return (mMax + mMin) * 0.5; }
// \brief Coordinates of the maximum corner with respect to the centroid.
inline Eigen::Vector3d computeHalfExtents() const { return (mMax - mMin) * 0.5; }
// \brief Length of each of the sides of the bounding box.
inline Eigen::Vector3d computeFullExtents() const { return (mMax - mMin); }
protected:
// \brief minimum coordinates of the bounding box
Eigen::Vector3d mMin;
// \brief maximum coordinates of the bounding box
Eigen::Vector3d mMax;
};
} // namespace math
} // namespace kido
#endif // KIDO_MATH_GEOMETRY_HPP_
|