/usr/include/lemon/insertion_tsp.h is in liblemon-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_INSERTION_TSP_H
#define LEMON_INSERTION_TSP_H
/// \ingroup tsp
/// \file
/// \brief Insertion algorithm for symmetric TSP
#include <vector>
#include <functional>
#include <lemon/full_graph.h>
#include <lemon/maps.h>
#include <lemon/random.h>
namespace lemon {
/// \ingroup tsp
///
/// \brief Insertion algorithm for symmetric TSP.
///
/// InsertionTsp implements the insertion heuristic for solving
/// symmetric \ref tsp "TSP".
///
/// This is a fast and effective tour construction method that has
/// many variants.
/// It starts with a subtour containing a few nodes of the graph and it
/// iteratively inserts the other nodes into this subtour according to a
/// certain node selection rule.
///
/// This method is among the fastest TSP algorithms, and it typically
/// provides quite good solutions (usually much better than
/// \ref NearestNeighborTsp and \ref GreedyTsp).
///
/// InsertionTsp implements four different node selection rules,
/// from which the most effective one (\e farthest \e node \e selection)
/// is used by default.
/// With this choice, the algorithm runs in O(n<sup>2</sup>) time.
/// For more information, see \ref SelectionRule.
///
/// \tparam CM Type of the cost map.
template <typename CM>
class InsertionTsp
{
public:
/// Type of the cost map
typedef CM CostMap;
/// Type of the edge costs
typedef typename CM::Value Cost;
private:
GRAPH_TYPEDEFS(FullGraph);
const FullGraph &_gr;
const CostMap &_cost;
std::vector<Node> _notused;
std::vector<Node> _tour;
Cost _sum;
public:
/// \brief Constants for specifying the node selection rule.
///
/// Enum type containing constants for specifying the node selection
/// rule for the \ref run() function.
///
/// During the algorithm, nodes are selected for addition to the current
/// subtour according to the applied rule.
/// The FARTHEST method is one of the fastest selection rules, and
/// it is typically the most effective, thus it is the default
/// option. The RANDOM rule usually gives slightly worse results,
/// but it is more robust.
///
/// The desired selection rule can be specified as a parameter of the
/// \ref run() function.
enum SelectionRule {
/// An unvisited node having minimum distance from the current
/// subtour is selected at each step.
/// The algorithm runs in O(n<sup>2</sup>) time using this
/// selection rule.
NEAREST,
/// An unvisited node having maximum distance from the current
/// subtour is selected at each step.
/// The algorithm runs in O(n<sup>2</sup>) time using this
/// selection rule.
FARTHEST,
/// An unvisited node whose insertion results in the least
/// increase of the subtour's total cost is selected at each step.
/// The algorithm runs in O(n<sup>3</sup>) time using this
/// selection rule, but in most cases, it is almost as fast as
/// with other rules.
CHEAPEST,
/// An unvisited node is selected randomly without any evaluation
/// at each step.
/// The global \ref rnd "random number generator instance" is used.
/// You can seed it before executing the algorithm, if you
/// would like to.
/// The algorithm runs in O(n<sup>2</sup>) time using this
/// selection rule.
RANDOM
};
public:
/// \brief Constructor
///
/// Constructor.
/// \param gr The \ref FullGraph "full graph" the algorithm runs on.
/// \param cost The cost map.
InsertionTsp(const FullGraph &gr, const CostMap &cost)
: _gr(gr), _cost(cost) {}
/// \name Execution Control
/// @{
/// \brief Runs the algorithm.
///
/// This function runs the algorithm.
///
/// \param rule The node selection rule. For more information, see
/// \ref SelectionRule.
///
/// \return The total cost of the found tour.
Cost run(SelectionRule rule = FARTHEST) {
_tour.clear();
if (_gr.nodeNum() == 0) return _sum = 0;
else if (_gr.nodeNum() == 1) {
_tour.push_back(_gr(0));
return _sum = 0;
}
switch (rule) {
case NEAREST:
init(true);
start<ComparingSelection<std::less<Cost> >,
DefaultInsertion>();
break;
case FARTHEST:
init(false);
start<ComparingSelection<std::greater<Cost> >,
DefaultInsertion>();
break;
case CHEAPEST:
init(true);
start<CheapestSelection, CheapestInsertion>();
break;
case RANDOM:
init(true);
start<RandomSelection, DefaultInsertion>();
break;
}
return _sum;
}
/// @}
/// \name Query Functions
/// @{
/// \brief The total cost of the found tour.
///
/// This function returns the total cost of the found tour.
///
/// \pre run() must be called before using this function.
Cost tourCost() const {
return _sum;
}
/// \brief Returns a const reference to the node sequence of the
/// found tour.
///
/// This function returns a const reference to a vector
/// that stores the node sequence of the found tour.
///
/// \pre run() must be called before using this function.
const std::vector<Node>& tourNodes() const {
return _tour;
}
/// \brief Gives back the node sequence of the found tour.
///
/// This function copies the node sequence of the found tour into
/// an STL container through the given output iterator. The
/// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
/// For example,
/// \code
/// std::vector<FullGraph::Node> nodes(countNodes(graph));
/// tsp.tourNodes(nodes.begin());
/// \endcode
/// or
/// \code
/// std::list<FullGraph::Node> nodes;
/// tsp.tourNodes(std::back_inserter(nodes));
/// \endcode
///
/// \pre run() must be called before using this function.
template <typename Iterator>
void tourNodes(Iterator out) const {
std::copy(_tour.begin(), _tour.end(), out);
}
/// \brief Gives back the found tour as a path.
///
/// This function copies the found tour as a list of arcs/edges into
/// the given \ref lemon::concepts::Path "path structure".
///
/// \pre run() must be called before using this function.
template <typename Path>
void tour(Path &path) const {
path.clear();
for (int i = 0; i < int(_tour.size()) - 1; ++i) {
path.addBack(_gr.arc(_tour[i], _tour[i+1]));
}
if (int(_tour.size()) >= 2) {
path.addBack(_gr.arc(_tour.back(), _tour.front()));
}
}
/// @}
private:
// Initializes the algorithm
void init(bool min) {
Edge min_edge = min ? mapMin(_gr, _cost) : mapMax(_gr, _cost);
_tour.clear();
_tour.push_back(_gr.u(min_edge));
_tour.push_back(_gr.v(min_edge));
_notused.clear();
for (NodeIt n(_gr); n!=INVALID; ++n) {
if (n != _gr.u(min_edge) && n != _gr.v(min_edge)) {
_notused.push_back(n);
}
}
_sum = _cost[min_edge] * 2;
}
// Executes the algorithm
template <class SelectionFunctor, class InsertionFunctor>
void start() {
SelectionFunctor selectNode(_gr, _cost, _tour, _notused);
InsertionFunctor insertNode(_gr, _cost, _tour, _sum);
for (int i=0; i<_gr.nodeNum()-2; ++i) {
insertNode.insert(selectNode.select());
}
_sum = _cost[_gr.edge(_tour.back(), _tour.front())];
for (int i = 0; i < int(_tour.size())-1; ++i) {
_sum += _cost[_gr.edge(_tour[i], _tour[i+1])];
}
}
// Implementation of the nearest and farthest selection rule
template <typename Comparator>
class ComparingSelection {
public:
ComparingSelection(const FullGraph &gr, const CostMap &cost,
std::vector<Node> &tour, std::vector<Node> ¬used)
: _gr(gr), _cost(cost), _tour(tour), _notused(notused),
_dist(gr, 0), _compare()
{
// Compute initial distances for the unused nodes
for (unsigned int i=0; i<_notused.size(); ++i) {
Node u = _notused[i];
Cost min_dist = _cost[_gr.edge(u, _tour[0])];
for (unsigned int j=1; j<_tour.size(); ++j) {
Cost curr = _cost[_gr.edge(u, _tour[j])];
if (curr < min_dist) {
min_dist = curr;
}
}
_dist[u] = min_dist;
}
}
Node select() {
// Select an used node with minimum distance
Cost ins_dist = 0;
int ins_node = -1;
for (unsigned int i=0; i<_notused.size(); ++i) {
Cost curr = _dist[_notused[i]];
if (_compare(curr, ins_dist) || ins_node == -1) {
ins_dist = curr;
ins_node = i;
}
}
// Remove the selected node from the unused vector
Node sn = _notused[ins_node];
_notused[ins_node] = _notused.back();
_notused.pop_back();
// Update the distances of the remaining nodes
for (unsigned int i=0; i<_notused.size(); ++i) {
Node u = _notused[i];
Cost nc = _cost[_gr.edge(sn, u)];
if (nc < _dist[u]) {
_dist[u] = nc;
}
}
return sn;
}
private:
const FullGraph &_gr;
const CostMap &_cost;
std::vector<Node> &_tour;
std::vector<Node> &_notused;
FullGraph::NodeMap<Cost> _dist;
Comparator _compare;
};
// Implementation of the cheapest selection rule
class CheapestSelection {
private:
Cost costDiff(Node u, Node v, Node w) const {
return
_cost[_gr.edge(u, w)] +
_cost[_gr.edge(v, w)] -
_cost[_gr.edge(u, v)];
}
public:
CheapestSelection(const FullGraph &gr, const CostMap &cost,
std::vector<Node> &tour, std::vector<Node> ¬used)
: _gr(gr), _cost(cost), _tour(tour), _notused(notused),
_ins_cost(gr, 0), _ins_pos(gr, -1)
{
// Compute insertion cost and position for the unused nodes
for (unsigned int i=0; i<_notused.size(); ++i) {
Node u = _notused[i];
Cost min_cost = costDiff(_tour.back(), _tour.front(), u);
int min_pos = 0;
for (unsigned int j=1; j<_tour.size(); ++j) {
Cost curr_cost = costDiff(_tour[j-1], _tour[j], u);
if (curr_cost < min_cost) {
min_cost = curr_cost;
min_pos = j;
}
}
_ins_cost[u] = min_cost;
_ins_pos[u] = min_pos;
}
}
Cost select() {
// Select an used node with minimum insertion cost
Cost min_cost = 0;
int min_node = -1;
for (unsigned int i=0; i<_notused.size(); ++i) {
Cost curr_cost = _ins_cost[_notused[i]];
if (curr_cost < min_cost || min_node == -1) {
min_cost = curr_cost;
min_node = i;
}
}
// Remove the selected node from the unused vector
Node sn = _notused[min_node];
_notused[min_node] = _notused.back();
_notused.pop_back();
// Insert the selected node into the tour
const int ipos = _ins_pos[sn];
_tour.insert(_tour.begin() + ipos, sn);
// Update the insertion cost and position of the remaining nodes
for (unsigned int i=0; i<_notused.size(); ++i) {
Node u = _notused[i];
Cost curr_cost = _ins_cost[u];
int curr_pos = _ins_pos[u];
int ipos_prev = ipos == 0 ? _tour.size()-1 : ipos-1;
int ipos_next = ipos == int(_tour.size())-1 ? 0 : ipos+1;
Cost nc1 = costDiff(_tour[ipos_prev], _tour[ipos], u);
Cost nc2 = costDiff(_tour[ipos], _tour[ipos_next], u);
if (nc1 <= curr_cost || nc2 <= curr_cost) {
// A new position is better than the old one
if (nc1 <= nc2) {
curr_cost = nc1;
curr_pos = ipos;
} else {
curr_cost = nc2;
curr_pos = ipos_next;
}
}
else {
if (curr_pos == ipos) {
// The minimum should be found again
curr_cost = costDiff(_tour.back(), _tour.front(), u);
curr_pos = 0;
for (unsigned int j=1; j<_tour.size(); ++j) {
Cost tmp_cost = costDiff(_tour[j-1], _tour[j], u);
if (tmp_cost < curr_cost) {
curr_cost = tmp_cost;
curr_pos = j;
}
}
}
else if (curr_pos > ipos) {
++curr_pos;
}
}
_ins_cost[u] = curr_cost;
_ins_pos[u] = curr_pos;
}
return min_cost;
}
private:
const FullGraph &_gr;
const CostMap &_cost;
std::vector<Node> &_tour;
std::vector<Node> &_notused;
FullGraph::NodeMap<Cost> _ins_cost;
FullGraph::NodeMap<int> _ins_pos;
};
// Implementation of the random selection rule
class RandomSelection {
public:
RandomSelection(const FullGraph &, const CostMap &,
std::vector<Node> &, std::vector<Node> ¬used)
: _notused(notused) {}
Node select() const {
const int index = rnd[_notused.size()];
Node n = _notused[index];
_notused[index] = _notused.back();
_notused.pop_back();
return n;
}
private:
std::vector<Node> &_notused;
};
// Implementation of the default insertion method
class DefaultInsertion {
private:
Cost costDiff(Node u, Node v, Node w) const {
return
_cost[_gr.edge(u, w)] +
_cost[_gr.edge(v, w)] -
_cost[_gr.edge(u, v)];
}
public:
DefaultInsertion(const FullGraph &gr, const CostMap &cost,
std::vector<Node> &tour, Cost &total_cost) :
_gr(gr), _cost(cost), _tour(tour), _total(total_cost) {}
void insert(Node n) const {
int min = 0;
Cost min_val =
costDiff(_tour.front(), _tour.back(), n);
for (unsigned int i=1; i<_tour.size(); ++i) {
Cost tmp = costDiff(_tour[i-1], _tour[i], n);
if (tmp < min_val) {
min = i;
min_val = tmp;
}
}
_tour.insert(_tour.begin()+min, n);
_total += min_val;
}
private:
const FullGraph &_gr;
const CostMap &_cost;
std::vector<Node> &_tour;
Cost &_total;
};
// Implementation of a special insertion method for the cheapest
// selection rule
class CheapestInsertion {
TEMPLATE_GRAPH_TYPEDEFS(FullGraph);
public:
CheapestInsertion(const FullGraph &, const CostMap &,
std::vector<Node> &, Cost &total_cost) :
_total(total_cost) {}
void insert(Cost diff) const {
_total += diff;
}
private:
Cost &_total;
};
};
}; // namespace lemon
#endif
|