/usr/include/Lfunction/Lgamma.h is in liblfunction-dev 1.23+dfsg-6build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 | /*
Copyright (C) 2001,2002,2003,2004 Michael Rubinstein
This file is part of the L-function package L.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef Lgamma_H
#define Lgamma_H
#include "Lglobals.h"
#include "Lmisc.h"
#include <iomanip> //for manipulating output such as setprecision
#include <iostream> //for ostrstream
#include <cstring>
//using namespace std;
template <class ttype>
precise(ttype) log_GAMMA (ttype z,int n=0); //return ttype since I also want to
//use it for N(T) which is real.
template <class ttype,class ttype2>
Complex GAMMA (ttype z,ttype2 delta);
//computes G(z,w)
template <class ttype>
Complex inc_GAMMA (ttype z,ttype w, const char *method="temme", ttype exp_w = 0, bool recycle=false); //computes G(z,w)
template <class ttype>
ttype asympt_GAMMA (ttype z,ttype w, ttype exp_w = 0, bool recycle=false); //computes G(z,w) via asymptotic series
template <class ttype>
ttype cfrac_GAMMA (ttype z,ttype w, ttype exp_w = 0, bool recycle=false); //computes G(z,w) via continued fraction
template <class ttype>
ttype comp_inc_GAMMA (ttype z,ttype w,ttype exp_w = 0, bool recycle=false); //computes g(z,w)
inline Double real(Double z){
return z;
}
inline Double imag(Double z){
return 0;
}
//used in Temme's asymptotics of the incomplete gamma function
Complex Q(Complex z, Complex w);
Complex erfc(Complex z);
Complex erfc2(Complex z);
template <class ttype>
Complex gamma_sum(Complex s, int what_type,ttype *coeff, int N, Double g, Complex l, Double Q, Long Period, Complex delta=1, const char *method="temme");
//computes a sum of G(z,w)'s (as in (3.3.20)).
Complex exp_recycle();
//compute the nth derivative of log(GAMMA(z))
//n=0 should just give log_GAMMA(z)... thus making log_GAMMA
//code obsolete. But leave log_GAMMA intact anyways.
template <class ttype>
precise(ttype) log_GAMMA (ttype z,int n)
{
int M;
precise(ttype) log_G,r,r2,y;
Double xx=real((Complex)z),yy=imag((Complex)z);
if(xx<0) xx=-xx;
Double x;
int i,m;
//assume the remainder stopping at the mth term is roughly bernoulli(2m)/(z+M)^(2m).
//Now bernoulli(2m) is roughly (2m)!/(2Pi)^(2m). So remainder is more or less
//(2m/(2ePi(z+M))^(2m). Setting 2m = Digits, we see that we need m/(ePi(z+M))
//to be roughly 1/10 in size, i.e. |z+M| should be roughly 10*m/(ePi)=10*Digits/(2ePi).
//squaring, gives us how large M should be.
//n==0 leads to |z+M| >10*2m/(2*Pi*e) with 2m=Digits. However, when we differentiate
//we end up with extra powers of (z+M) in the denominators, but extra (2m-1)...(2m+n-2)
//in the numerators. So assume further that |z+M| > 2m+n = Digits+n
if(n==0){
//.343 = 100./(4*Pi*Pi*exp(2.))
if((xx*xx+yy*yy)> .343*DIGITS*DIGITS) M=0;
else M=Int(ceil(sqrt((DIGITS*DIGITS*.343-yy*yy))-xx+1));
}
else{
if((xx*xx+yy*yy)> .343*(DIGITS+n)*(DIGITS+n)) M=0;
else M=Int(ceil(sqrt(((DIGITS+n)*(DIGITS+n)*.343-yy*yy))-xx+1));
}
if(n==0)
log_G=log_2Pi/2+(z+M-.5)*log(z+M)-(z+M);
else if(n==1)
log_G=log(z+M)-.5/(z+M);
else{
r=1;
for(m=1;m<=n-1;m++){
r=-r*m/(z+M);
}
log_G=log_G-r/(n-1)-.5*r/(z+M);
}
r=1;
for(m=1;m<=n;m++){
r=-r*m/(z+M);
}
r=r/(z+M);
r2=1/((z+M)*(z+M));
m=2;
x=my_norm(r);
do{
y=bernoulli[m]*r;
log_G=log_G+y/(m*(m-1));
r=r*(m+n-1)*(m+n)*r2/((m-1)*m);
m=m+2;
//}while(m<=DIGITS&&my_norm(r)*tolerance_sqrd<x);
}while(m<=DIGITS);
for(m=0;m<=M-1;m++){
if(n==0){
log_G=log_G-log(z+m); //XXX might be faster to multiply and take one log,
//but careful about overflow errors
}
else{
r=1;
for(i=1;i<=n;i++){
r=-r*i/(z+m);
}
log_G=log_G+r/n;
}
}
return log_G;
}
// computes GAMMA(z) delta^(-z)
// assumes the ttype is at least real.
// I compute this as exp(log(GAMMA(z))
// since there are 1/2 as many terms and the error analysis
//is easier.
//Temme's book, chapter 3 gives the error analysis for
//log(GAMMA(z)), z>0, and mentions Spira's estimate for complex values of z.
//He also suggests using the reflection formula for negative values.
template <class ttype,class ttype2>
Complex GAMMA (ttype z1, ttype2 delta)
{
precise(ttype) z=z1;
Complex log_G;
Double xx=real((Complex)z),yy=imag((Complex)z);
if(xx<0) xx=-xx;
if(z==last_z_GAMMA) log_G=last_log_G;
else{
int M;
precise(ttype) r,r2,y;
Double x;
int m;
//assume the remainder stopping at the mth term is roughly bernoulli(2m)/(z+M)^(2m).
//Now bernoulli(2m) is roughly (2m)!/(2Pi)^(2m). So remainder is more or less
//(2m/(2ePi(z+M))^(2m). Setting 2m = Digits, we see that we need m/(ePi(z+M))
//to be roughly 1/10 in size, i.e. |z+M| should be roughly 10*m/(ePi)=10*Digits/(2ePi).
//squaring, gives us how large M should be.
//.343 = 100./(4*Pi*Pi*exp(2.))
if((xx*xx+yy*yy)> .343*DIGITS*DIGITS) M=0;
else M=Int(ceil(sqrt((DIGITS*DIGITS*.343-yy*yy))-xx+1));
log_G=log_2Pi/2+(z+M-.5)*log(z+M)-(z+M);
r=(z+M)*(z+M);
r2=(z+M);
m=2;
x=my_norm(r2);
do{
y=bernoulli[m]/r2;
log_G=log_G+y/(m*(m-1));
r2=r2*r;
m=m+2;
//}while(m<=DIGITS&&my_norm(r2)*tolerance_sqrd<x);
}while(m<=DIGITS);
for(m=0;m<=M-1;m++) log_G=log_G-log(z+m); //XXX could combine into a single log, but careful about overflow XXXX
last_log_G=log_G;
last_z_GAMMA=z;
}
log_G=log_G-z*log(delta);
return exp(log_G);
}
//XXXXXXXXXX
//causes problems if z is an integer <=0
//not meant to be used for very negative values of Re(z)
//since a recursion is used to get z positive.
//if recycling is turned on (this is done in gamma_sum, for example), then we use the
//value exp_w which holds exp(-w)
//computes G(z,w), so there's an extra w^(-z) factor.
template <class ttype>
Complex inc_GAMMA (ttype z,ttype w, const char *method, ttype exp_w, bool recycle)
{
Complex G;
Double h,x,y;
ttype tmp=z+1;
if(my_verbose>2) cout << "inc_GAMMA called. G(" << z<< " , " << w << ")" << endl;
//if(my_norm(z)<tolerance_sqrd){
if(my_norm(z)<.01){
return cfrac_GAMMA(z,w,exp_w,recycle);
}
if(my_norm(z-1)<tolerance_sqrd){
if (recycle==false) return(exp(-w)/w);
else return(exp_w/w);
}
if(real((Complex)z)<=0){
//XXXX tmp equals z+1. compiler complains when I try inc_GAMMA(z+1,w)
//when mpfr is used. Regards z+1 here as a binary expression rather than a
//Complex or Double
if (recycle==false) return ((w*inc_GAMMA(tmp,w)-exp(-w))/z);
else return ((w*inc_GAMMA(tmp,w,method, exp_w,recycle)-exp_w)/z);
}
y=my_norm(w);
if((my_norm(z)>100&&y>my_norm(z*1.01))||!strcmp(method,"continued fraction"))
{
return cfrac_GAMMA(z,w,exp_w,recycle);
}
x=imag((Complex)z);
if(x<0)x=-x;
//x=x-sqrt(x);
x=.99*x; //temme works better here than x-sqrt(x), at least asymptotically
if(y<1600||y<x*x) //XXXX roughly if |w|<|imag(z)| , or if |w| is small
//XXXX NOTE:
//XXXX one apparent problem with using g(z,w)
//XXXX when Re w is large, is that g(z,w) is
//XXXX close to GAMMA(z)*w^(-z).
//XXXX So subtracting to get G(z,w) loses me precision in
//XXXX the 'non leading zero' digits.
//XXXX On the other hand... if we count the leading zeros,
//XXXX then we have our full precision! And we should count them!
//XXXX When we sum the terms in (33) of my Computation methods paper,
//XXXX the initial ones start
//XXXX off comparatively large... so the leading zeros count in
//XXXX the later terms (i.e. even if we had more precision for
//XXXX the later G(z,w) terms it would be lost when we summed
//XXXX against the earlier terms in (33)).
//XXXX note... we can use this to *slightly* speed up
//XXXX the computation in that we don't always need to ask g(z,w)
//XXXX for too many digits since only the first few will be useful.
//XXXX i haven't implemented this, though.
{
last_z=z;
last_w=w;
last_comp_inc_GAMMA=comp_inc_GAMMA(z,w,exp_w,recycle);
G=GAMMA(z,w)-last_comp_inc_GAMMA;
//cout << "series GAMMA("<<z<<","<<w<<")= " << G << endl; //XXXXX
return G;
}
//XXXXX condition here and above should depend on precision
//if(y>=10&&y<1600)
//{
//return cfrac_GAMMA(z,w,exp_w,recycle);
//}
//use temme's uniform asymptotics
if(!strcmp(method,"temme")&&y<my_norm(z*1.2))
{
G=Q(z,w)*GAMMA(z,w);
if(my_verbose>3) cout << "temme GAMMA("<<z<<","<<w<<")= " << G << endl; //XXXXX
return G;
}
//asymptotic series... should never be called, but doesn't hurt to have it
x=abs(z);
h=(DIGITS+2)*2.3026+1; //XXXX+2 is to be safe
x=x+h+sqrt(h*h+4*h*x); //XXXX (3.3.48) of my thesis generalized for DIGITS
if(y>x*x) //XXXX if abs(w) > (3.3.48)
{
return asympt_GAMMA(z,w,exp_w,recycle);
}
// this is called if abs(z)<10 and w is around size 40
//return ((w*inc_GAMMA(z+1,w)-exp(-w))/z);
if (recycle==false) return ((w*inc_GAMMA(tmp,w)-exp(-w))/z);
else return ((w*inc_GAMMA(tmp,w,method, exp_w,recycle)-exp_w)/z);
}
template <class ttype>
ttype cfrac_GAMMA (ttype z,ttype w, ttype exp_w, bool recycle) //computes G(z,w) via continued fraction
{
ttype G;
if(my_verbose>3) cout << "called cfrac_GAMMA("<<z<<","<<w<<")"<< endl;
/*
//old code commented out. Old code used backward recursion iterated until
//convergence to within tolerance was satisfied. This requires extra steps
//compared to forward recursion.
//Complex tmp=1;
int m;
int M=2;
bool escape=false;
for(int m=M;m>=1;m--)
//tmp=w+(m-z)/(1+m/tmp);
tmp=w+tmp*(m-z)/(tmp+m);
do{
M=2*M;
G=1;
for(int m=M;m>=1;m--)
G=w+G*(m-z)/(G+m);
if(my_norm(1-tmp/G)<tolerance_sqrd)escape=true;
else tmp=G;
cout << "cfrac with number terms: "<<M << endl;
}while(!escape&&M<100000000);
*/
// newer version uses forward recursion. We also avoid the
// expense of dividing, keeping track of the numerators
// and denominators, dividing after convergence is achieved.
int n;
ttype P1=1.,P2=w,P3,Q1=0.,Q2=1.,Q3;
n=0;
do{
n++;
P3=P2+(n-z)*P1;
Q3=Q2+(n-z)*Q1;
P1=P2;P2=P3;
Q1=Q2;Q2=Q3;
P3=w*P2+n*P1;
Q3=w*Q2+n*Q1;
P1=P2;P2=P3;
Q1=Q2;Q2=Q3;
//to prevent overflow
//XXX check this
if(n%8==0&&(real(P2)>1.e40||real(P2)<-1.e40||imag(P2)>1.e40||imag(P2)<-1.e40)){
//cout << "before " << P1 ;
P1=P1*1.e-40;
P2=P2*1.e-40;
Q1=Q1*1.e-40;
Q2=Q2*1.e-40;
//cout << " after " << P1 <<endl;
}
//cout << "cfrac1 : " << n<< " " <<my_norm(Q2*P1-P2*Q1) << " " << my_norm(Q2*P1*tolerance)<<endl;
//cout << "cfrac called n equals: " << n << " P2/Q2 " << P2/Q2 << endl;
} while(n<2||(my_norm(Q2*P1-P2*Q1)>my_norm(Q2*P1*tolerance)&&n<1000000));
//cout << "cfrac called n equals: " << n << " " << abs(z/w) << endl;
G=P2/Q2;
if(n>999999){
cout << "Continued fraction for G(z,w) failed to converge. z = "
<< z << " w = " << w << endl;
exit(1);
}
if(recycle==false) G=exp(-w)/G; //XXXXX mpfr should I precise(ttype) w ?
else G=exp_w/G;
//cout<< setprecision(30);
//cout << "cfrac GAMMA("<<z<<","<<w<<")= " << G << endl; //XXXXX
return G;
}
template <class ttype>
ttype asympt_GAMMA (ttype z,ttype w, ttype exp_w, bool recycle) //computes G(z,w) via asymptotic series
{
if(my_verbose>3) cout << "called asympt_GAMMA("<<z<<","<<w<<")"<< endl;
ttype G=0;
ttype r=1.;
int j=0;
do
{
G=G+r;
r=r*(z-1-j)/w;
//cout << j << " " << G << " " << r <<" " << tolerance <<endl; //XXXXX
j++;
}while(my_norm(r)>tolerance_sqrd);
if(recycle==false) G=G*exp(-w)/w;
else G=G*exp_w/w;
//cout << "asymptotics GAMMA("<<z<<","<<w<<")= " << G << endl; //XXXXX
return G;
}
template <class ttype>
ttype comp_inc_GAMMA (ttype z,ttype w,ttype exp_w, bool recycle) //computes g(z,w)
{
ttype g;
Double t;
int m;
//Complex u=w*w;
//u=u*u;
if(my_verbose>3) cout << "called comp_inc_GAMMA("<<z<<","<<w<<")"<< endl;
t=my_norm(w/z);
if(t>.9801 || my_norm(w)<.36){
ttype r=1.;
m=1;
g=0;
do{ //XXXXXXXXXXXXX optimize combine the m++'s and g=g+r and z+m's
g=g+r;
r=r*w/(z+m);
m++;
g=g+r;
r=r*w/(z+m);
m++;
g=g+r;
r=r*w/(z+m);
m++;
//v=z+m;
//g=g+r+
//cout<< "using series for comp inc " << t << " " << abs(w) << " " << m <<" " << g*exp(-w)/z<< endl;
}while(my_norm(r)>tolerance_sqrd||real((Complex)z)<=-m);
if(recycle==false) g=g*exp(-w)/z;
else g=g*exp_w/z;
}
else{
/*-----------------------------------------------------------
// old iterated backward recursion replaced by forward recursion
int M=2;
Complex tmp=1;
bool escape=false;
for(int m=M;m>=1;m--){
if(m%2==0){
//tmp= z+m-1+(m/2)*w/tmp;
tmp= z+m-1+m*.5*w/tmp;
}
else{
tmp= z+m-1-(z+(m-1)*.5)*w/tmp;
}
}
do{
M=2*M;
g=1;
for(int m=M;m>=1;m--){
if(m%2==0){
g= z+m-1+m*.5*w/g;
}
else{
g= z+m-1-(z+(m-1)*.5)*w/g;
}
}
if(abs(1-tmp/g)<tolerance)escape=true;
else tmp=g;
}while(!escape&&M<10000000);
//XXXXXX maybe put an error message + exit here if M is big
if(M==10000000){
cout << "continued fraction for complimentary incomplete gamma failed to converge.";
cout<< endl << "z = " << z << " w = " << w << endl;
exit(1);
}
*/
//cout <<setprecision(20) << endl;
//cout << "g1: " << g << endl;
int n;
ttype P1=1.,P2=z,P3,Q1=0.,Q2=1.,Q3;
ttype u=.5*w;
//ttype t1,t2;
n=0;
do{
n++;
P3=(z+n)*P2-(z+(n-1)*.5)*w*P1;
Q3=(z+n)*Q2-(z+(n-1)*.5)*w*Q1;
//t1=z+n;
//t2=(z+(n-1)*.5)*w;
//P3=t1*P2-t2*P1;
//Q3=t1*Q2-t2*Q1;
P1=P2;P2=P3;
Q1=Q2;Q2=Q3;
n++;
P3=(z+n)*P2+n*u*P1;
Q3=(z+n)*Q2+n*u*Q1;
//t1=t1+1; t2=n*u;
//P3=t1*P2+t2*P1;
//Q3=t1*Q2+t2*Q1;
P1=P2;P2=P3;
Q1=Q2;Q2=Q3;
//cout << P2/Q2 << " " << norm(Q2*P1-P2*Q1) / norm(Q2*P1*tolerance) <<endl;
//to prevent overlow
if(n%8==0&&(real(P2)>1.e50||real(P2)<-1.e50||imag(P2)>1.e50||imag(P2)<-1.e50)){
P1=P1*1.e-50;
P2=P2*1.e-50;
Q1=Q1*1.e-50;
Q2=Q2*1.e-50;
}
//cout<< "using cfrac for comp inc " << t << " " << abs(w) << " " << n <<" " << Q2/P2*exp(-w)<< " GAMMA " << GAMMA(z,w)<< endl;
} while(n<3||(my_norm(Q2*P1-P2*Q1)>my_norm(Q2*P1*tolerance)&&n<1000000));
g=P2/Q2;
//cout<< "using cfrac for comp inc " << t << " " << n << endl;
if(n>999999){
cout << "Mofu. Continued fraction for g(z,w) failed to converge. z = "
<< z << " w = " << w << endl;
exit(1);
}
if(recycle==false) g=exp(-w)/g;
else g=exp_w/g;
}
return g;
}
template <class ttype>
Complex gamma_sum(Complex s, int what_type, ttype *coeff, int N, Double g, Complex l, Double Q, Long Period, Complex delta, const char *method)
{
Complex SUM=0;
Complex z,w;
Complex G;
Complex r;
Complex u;
Complex e1,e2,e3,exp_w; //used to compute exp(-n w_0) or exp(-n^2 w_0) by repeated multiplication
//saves on taking exponents
int n=1;
int n2=1;
Double x,y,y2,y3=0,MAX=0;
bool escape=false;
bool is_z_real=false;
bool is_w_real=false;
z=g*s+l;
if(my_norm(imag(z))<tolerance_sqrd) is_z_real=true;
if(my_norm(imag(delta))<tolerance_sqrd) is_w_real=true;
w=delta/Q;
if(g<.6) w=w*w; //i.e. if g=1/2
e1=exp(-w); exp_w=1.;
e2=e1*e1; e3=1.;
//for recycling of data
//two cases: exp(-w), with w= n w_0 or n^2 w_0
//Denote as e_n. Then
//exp_w -> exp_w e1 when gamma = 1
// = exp_w exp(-(2n-1) w_0) when gamma = 1/2
//y=abs(z)+abs(real(z))+1;
if(what_type==-1) //i.e. if the Riemann zeta function
do{
w=Pi*n*n*delta*delta;
exp_w=exp_w*e1*e3; //e1 is exp(-(delta/Q)^2) in this case, and e3 is exp(-(2n-2)*(delta/Q)^2), Q =1/sqrt(Pi)
e3=e3*e2;
G=inc_GAMMA(z,w,method,exp_w,true);
SUM=SUM+G;
n++;
x=my_norm(SUM);
if(x>MAX) MAX=x;
if(real(w-z)>10) //10 is kind of arbitrary . G(z,w) will decay like e(-Re(w)), so
//we'll escape once Re(w) is around log(10)*DIGITS. So, 10 is okay
//as a place to start checking
{
if (my_norm(G)<MAX*tolerance_sqrd) escape=true;
}
}while(!escape);
//XXXX checking abs(G)>tolerance is not so smart... since two of the ways
//XXXX I compute G, series and nielsen, only gives us 10E-15, say, regardless
//XXXX how small it really is (since we subtract g(z,w) from GAMMA(z)w^(-z)
//XXXX and these are nearly equal when w is big enough.
//XXXX Best to compare estimate for largest of terms yet to be added
//XXXX and see if this is <MAX*tolerance, where MAX is the maximum
//XXXX attained by the partial sums.
else
do
{
w=n*delta/Q;
//i.e. if g=1/2
if(g<.6) {
w=w*w;
exp_w=exp_w*e1*e3; //e1 is exp(-(delta/Q)^2) in this case, and e3 is exp(-(2n-2)*(delta/Q)^2)
e3=e3*e2;
}
else exp_w=exp_w*e1; //if gamma=1, we need exp_w=exp(-n delta/Q)
if(l==0){
u=1;
}
else{
u=exp(LOG(n)*l/g); //XXX this can be stored if it is called repeatedly
}
if(coeff[n2]!=0)
{
//if both are real, we should send as Doubles. That way we avoid complex arithmetic
//which is more time consuming
if(is_z_real&&is_w_real){
G=inc_GAMMA(Double(real(z)),Double(real(w)),method,Double(real(exp_w)),true);
if (my_verbose>2) cout << "GAMMA SUM with doubles = " << G << endl;
//cout<<"both z and w are real\n";
}
else{
G=inc_GAMMA(z,w,method,exp_w,true);
if (my_verbose>2) cout << "GAMMA SUM = " << G << endl;
//cout<<"none are real\n";
}
SUM=SUM+G*u*coeff[n2];
}
n++; n2++;
x=my_norm(SUM);
if(x>MAX) MAX=x;
if(real(w-z)>10) //10 is kind of arbitrary . G(z,w) will decay like e(-Re(w)), so
//we'll escape once Re(w) is around log(10)*DIGITS. So, 10 is okay
//as a place to start checking
{
//y3=4*exp(-real(w))/(y2+1);
//if (my_norm(u)*y3*y3*n*n<MAX*tolerance_sqrd) escape=true;
if (my_norm(u*G)*n*n<MAX*tolerance_sqrd) escape=true;
}
if(n2>Period&&Period>1) n2=(n2-Period);
}while(n2<=N&&!escape);
//XXXXnote, we copy the tolerance feature for zeta, but make sure
//XXXXto also include b(n)<sigma_0(n)< n and n^(Re l/g) factors.
//XXXX(that is why we have the n*u in the while).
if(n2>N&&what_type!=-1)
{
if(print_warning){
print_warning=false;
cout << "WARNING from gamma sum- we don't have enough Dirichlet coefficients." << endl;
cout << "Will use the maximum possible, though the output ";
cout << "will not necessarily be accurate." << endl;
}
//exit(1);
}
max_n = n;
if(my_verbose>0) cout << "s = " << s << "gamma_sum called, number terms used: " << n << endl;
return SUM;
}
#endif
|