This file is indexed.

/usr/include/lorene/C++/Include/base_val.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/*
 *  Definition of Lorene class Base_val
 *
 */

/*
 *   Copyright (c) 1999-2000 Jean-Alain Marck
 *   Copyright (c) 1999-2001 Eric Gourgoulhon
 *   Copyright (c) 1999-2001 Philippe Grandclement
 *   Copyright (c) 2001 Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


#ifndef __BASE_VAL_H_ 
#define __BASE_VAL_H_ 

/*
 * $Id: base_val.h,v 1.23 2014/10/13 08:52:31 j_novak Exp $
 * $Log: base_val.h,v $
 * Revision 1.23  2014/10/13 08:52:31  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.22  2014/10/06 15:09:39  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.21  2013/06/05 15:10:41  j_novak
 * Suppression of FINJAC sampling in r. This Jacobi(0,2) base is now
 * available by setting colloc_r to BASE_JAC02 in the Mg3d constructor.
 *
 * Revision 1.20  2013/01/11 08:20:10  j_novak
 * New radial spectral bases with Legendre polynomials (R_LEG, R_LEGP, R_LEGI).
 *
 * Revision 1.19  2012/01/17 10:18:17  j_penner
 * changed nzone from a private member to a protected member
 *
 * Revision 1.18  2009/10/23 12:55:46  j_novak
 * New base T_LEG_MI
 *
 * Revision 1.17  2009/10/08 16:19:32  j_novak
 * Addition of new bases T_COS and T_SIN.
 *
 * Revision 1.16  2008/12/03 15:21:20  j_novak
 * New method mult_cost.
 *
 * Revision 1.15  2007/12/11 15:28:05  jl_cornou
 * Jacobi(0,2) polynomials partially implemented
 *
 * Revision 1.14  2005/09/07 13:09:48  j_novak
 * New method for determining the highest multipole that can be described on a 3D
 * grid.
 *
 * Revision 1.13  2004/11/23 15:03:14  m_forot
 * Corrected error in comments.
 *
 * Revision 1.12  2004/11/04 15:39:45  e_gourgoulhon
 * Modif documentation: added description of bases without any symmetry
 *  in theta.
 *
 * Revision 1.11  2004/08/24 09:14:40  p_grandclement
 * Addition of some new operators, like Poisson in 2d... It now requieres the
 * GSL library to work.
 *
 * Also, the way a variable change is stored by a Param_elliptic is changed and
 * no longer uses Change_var but rather 2 Scalars. The codes using that feature
 * will requiere some modification. (It should concern only the ones about monopoles)
 *
 * Revision 1.10  2004/03/22 13:12:40  j_novak
 * Modification of comments to use doxygen instead of doc++
 *
 * Revision 1.9  2004/01/27 14:31:25  j_novak
 * New method Base_val::mult_sint()
 *
 * Revision 1.8  2004/01/27 14:13:58  j_novak
 * Added method Base_val::mult_x()
 *
 * Revision 1.7  2003/10/20 06:41:43  e_gourgoulhon
 * Corrected documentation.
 *
 * Revision 1.6  2003/10/19 19:42:50  e_gourgoulhon
 * -- member nzone now private
 * -- introduced new methods get_nzone() and get_b()
 * -- introduced new methods name_r, name_theta and name_phi.
 *
 * Revision 1.5  2003/09/16 08:53:05  j_novak
 * Addition of the T_LEG_II base (odd in theta, only for odd m) and the
 * transformation functions from and to T_SIN_P.
 *
 * Revision 1.4  2002/10/16 14:36:28  j_novak
 * Reorganization of #include instructions of standard C++, in order to
 * use experimental version 3 of gcc.
 *
 * Revision 1.3  2002/09/13 09:17:31  j_novak
 * Modif. commentaires
 *
 * Revision 1.2  2002/06/17 14:05:15  j_novak
 * friend functions are now also declared outside the class definition
 *
 * Revision 1.1.1.1  2001/11/20 15:19:27  e_gourgoulhon
 * LORENE
 *
 * Revision 2.20  2001/10/12  14:56:09  novak
 * Ajout des methodes dsdx(), dsdt(), etc...
 *
 * Revision 2.19  2001/05/29 16:08:45  eric
 * Modif commentaires (mise en conformite Doc++ 3.4.7).
 *
 * Revision 2.18  2000/09/28  10:19:50  eric
 * Modif commentaires (nouvelles bases T_LEG_IP et T_LEG_PI).
 *
 * Revision 2.17  2000/09/08  11:42:55  eric
 * *** empty log message ***
 *
 * Revision 2.16  2000/09/08  10:14:11  eric
 * *** empty log message ***
 *
 * Revision 2.15  2000/09/08  10:11:49  eric
 * *** empty log message ***
 *
 * Revision 2.14  2000/09/08  10:10:24  eric
 * *** empty log message ***
 *
 * Revision 2.13  2000/09/08  10:06:19  eric
 * Ajout des methodes set_base_r, etc... et get_base_r, etc...
 *
 * Revision 2.12  1999/12/29  10:49:12  eric
 * theta_functions et phi_functions declarees const.
 *
 * Revision 2.11  1999/12/29  10:36:58  eric
 * Modif commentaires.
 *
 * Revision 2.10  1999/12/28  12:57:44  eric
 * Introduction des methodes theta_functions et phi_functions.
 *
 * Revision 2.9  1999/11/19  14:53:11  phil
 * *** empty log message ***
 *
 * Revision 2.8  1999/11/18  13:48:35  phil
 * *** empty log message ***
 *
 * Revision 2.7  1999/11/18  12:51:12  phil
 * commentaire de operator*
 *
 * Revision 2.6  1999/10/26  13:23:12  phil
 * *** empty log message ***
 *
 * Revision 2.5  1999/10/26  13:18:06  phil
 * ajout de l'operator*
 *
 * Revision 2.4  1999/10/13  15:49:12  eric
 * *** empty log message ***
 *
 * Revision 2.3  1999/10/12  10:02:17  eric
 * Amelioration des commentaires: description de toutes les bases.
 *
 * Revision 2.2  1999/10/01  15:55:58  eric
 * Depoussierage.
 * Documentation
 *
 * Revision 2.1  1999/09/13  14:38:08  phil
 * ajout de l'operateur ==
 *
 * Revision 2.0  1999/02/22  15:17:47  hyc
 * *** empty log message ***
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/base_val.h,v 1.23 2014/10/13 08:52:31 j_novak Exp $
 *
 */

#include <cstdio>
#include <cassert>
#include "headcpp.h"


#include "type_parite.h"
namespace Lorene {
class Tbl ;
class Mg3d ;

/**
 * Bases of the spectral expansions. \ingroup (spec)
 * 
 * The class \c Base_val  describes, in each domain, on which basis the
 * spectral expansion of a given function is performed. The corresponding
 * coefficients will be stored in a \c Mtbl_cf. 
 * 
 * The various bases in each of the three dimensions \e r , \f$\theta\f$ and
 * \f$\phi\f$ are identified by an integer defined by a macro in the
 * file \c type_parite.h. These three integers are then merged (by means of 
 * the bitwise OR operator) to give a single integer, stored in 
 * \c Base_val::b[l],  
 * \c l being the domain index. The bases in \e r , \f$\theta\f$ and \f$\phi\f$ can
 * be restored by applying the bitwise AND operator with the masks 
 * \c MSQ_R, \c MSQ_T and \c MSQ_P defined in \c type_parite.h.
 * 
 * The basis functions for expansion with respect to the radial coordinate \f$\xi\f$
 * are coded as follows, \e m being the order of the Fourier expansion in \f$\phi\f$:
 *   \li \c R_CHEB (0x00000001) : Chebyshev polynomials 
 *					    (\e r -sampling: \c FIN);
 *   \li \c R_CHEBP (0x00000002) : Even Chebyshev polynomials 
 *					    (\e r -sampling: \c RARE);
 *   \li \c R_CHEBI (0x00000003) : Odd Chebyshev polynomials 
 *						(\e r -sampling: \c RARE );
 *   \li \c R_CHEBPI_P (0x00000004) : Even (resp. odd) Chebyshev
 *	     polynomials for \e l (spherical harmonic index) even (resp. odd) (\e r -sampling: \c RARE );
 *   \li \c R_CHEBPI_I (0x00000005) : Odd (resp. even) Chebyshev
 *	     polynomials for \e l (spherical harmonic index) even (resp. odd) (\e r -sampling: \c RARE ) ;
 *   \li \c R_CHEBPIM_P (0x00000006) : Even (resp. odd) Chebyshev
 *	     polynomials for \e m even (resp. odd) (\e r -sampling: \c RARE );
 *   \li \c R_CHEBPIM_I (0x00000007) : Odd (resp. even) Chebyshev
 *	     polynomials for \e m even (resp. odd) (\e r -sampling: \c RARE ) ;
 *   \li \c R_CHEBU  (0x00000008) : Chebyshev polynomials 
 *					    (\e r -sampling: \c UNSURR ) ;
 *   \li \c R_LEG (0x00000009) : Legendre polynomials 
 *					    (\e r -sampling: \c FIN);
 *   \li \c R_LEGP (0x0000000a) : Even Legendre polynomials 
 *					    (\e r -sampling: \c RARE);
 *   \li \c R_LEGI (0x0000000b) : Odd Legendre polynomials 
 *					    (\e r -sampling: \c RARE);
 *   \li \c R_JACO02 (0x0000000c) : Jacobi(0,2) polynomials 
 *                                          (\e r -sampling: \c FIN).
 *
 * The basis functions for expansion with respect to the co-latitude coordinate 
 * \f$\theta\f$ are coded as follows, \e m being the order of the Fourier expansion 
 * in \f$\phi\f$:  
 *   \li \c T_COSSIN_C  (0x00000100) : \f$\cos(j \theta)\f$ for \e m even,
 *					      \f$\sin(j \theta)\f$ for \e m odd
 *						(\f$\theta\f$-sampling: \c NONSYM);
 *   \li \c T_COSSIN_S  (0x00000200) : \f$\sin(j \theta)\f$ for \e m even,
 *					      \f$\cos(j \theta)\f$ for \e m odd
 *						(\f$\theta\f$-sampling: \c NONSYM);
 *   \li \c T_COS  (0x00000300) : \f$\cos(j \theta)\f$ \e m being always even and
 *						(\f$\theta\f$-sampling: \c NONSYM);
 *   \li \c T_SIN  (0x00000400) : \f$\sin(j \theta)\f$ \e m being always even,
 *						(\f$\theta\f$-sampling: \c NONSYM);
 *   \li \c T_COS_P  (0x00000500) : \f$\cos(2j \theta)\f$
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_SIN_P  (0x00000600) : \f$\sin(2j \theta)\f$
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_COS_I  (0x00000700) : \f$\cos((2j+1) \theta)\f$
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_SIN_I  (0x00000800) : \f$\sin((2j+1) \theta)\f$
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_COSSIN_CP  (0x00000900) : \f$\cos(2j \theta)\f$ for \e m even,
 *					      \f$\sin((2j+1) \theta)\f$ for \e m odd
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_COSSIN_SP  (0x00000a00) : \f$\sin(2j \theta)\f$ for \e m even,
 *					      \f$\cos((2j+1) \theta)\f$ for \e m odd
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_COSSIN_CI  (0x00000b00) : \f$\cos((2j+1) \theta)\f$ for \e m even,
 *					      \f$\sin(2j \theta)\f$ for \e m odd
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_COSSIN_SI  (0x00000c00) : \f$\sin((2j+1) \theta)\f$ for \e m even,
 *					      \f$\cos(2j \theta)\f$ for \e m odd
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_LEG_P  (0x00000d00) : Associated Legendre functions
 *					  \f$P_{2j}^m(\cos\theta)\f$ for \e m even,
 *					  \f$P_{2j+1}^m(\cos\theta)\f$ for \e m odd
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_LEG_PP  (0x00000e00) : Associated Legendre functions
 *					  \f$P_{2j}^m(\cos\theta)\f$, \e m being 
 *					   always even
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_LEG_I  (0x00000f00) : Associated Legendre functions
 *					  \f$P_{2j+1}^m(\cos\theta)\f$ for \e m even,
 *					  \f$P_{2j}^m(\cos\theta)\f$ for \e m odd
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_LEG_IP  (0x00001000) : Associated Legendre functions
 *					  \f$P_{2j+1}^m(\cos\theta)\f$, \e m being 
 *					   always even
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_LEG_PI  (0x00001100) : Associated Legendre functions
 *					  \f$P_{2j+1}^m(\cos\theta)\f$, \e m being 
 *					   always odd
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_LEG_II  (0x00001200) : Associated Legendre functions
 *					  \f$P_{2j}^m(\cos\theta)\f$, \e m being 
 *					   always odd
 *						(\f$\theta\f$-sampling: \c SYM);
 *   \li \c T_LEG  (0x00001700) : Associated Legendre functions 
 *                              \f$P_l^m(\cos\theta)\f$ of all types ;
 *   \li \c T_LEG_MP  (0x00001800) : Associated Legendre functions 
 *                              \f$P_l^m(\cos\theta)\f$ \e m being always even 
 *                              (\f$\theta\f$-sampling: \c NONSYM );
 *   \li \c T_LEG_MI  (0x00001900) : Associated Legendre functions 
 *                              \f$P_l^m(\cos\theta)\f$ \e m being always odd 
 *                              (\f$\theta\f$-sampling: \c NONSYM );
 *
 * The basis functions for expansion with respect to the azimuthal coordinate 
 * \f$\phi\f$ are coded as follows
 *   \li \c P_COSSIN  (0x00010000) : Fourrier series 
 *					   \f$(\cos(m\phi),\ \sin(m\phi))\f$
 *					   (\f$\phi\f$-sampling: \c NONSYM);
 *   \li \c P_COSSIN_P  (0x00020000) : Fourrier series 
 *					   \f$(\cos(m\phi),\ \sin(m\phi))\f$ with
 * 					   even harmonics only (i.e. \e m even)
 *					   (\f$\phi\f$-sampling: \c SYM);
 *   \li \c P_COSSIN_I  (0x00030000) : Fourrier series 
 *					   \f$(\cos(m\phi),\ \sin(m\phi))\f$ with
 * 					   odd harmonics only (i.e. \e m odd)
 *					   (\f$\phi\f$-sampling: \c SYM);
 *
 */

class Base_val {

    // Data 
    // ----
    protected:
	int nzone ;	///< Number of domains (zones)

	public:	
	/// Array (size: \c nzone ) of the spectral basis in each domain
	int* b ;	

    // Constructors - Destructor
    // -------------------------
    public:
	explicit Base_val(int nb_of_domains) ;	    ///< Standard constructor
	Base_val(const Base_val& ) ;		    ///< Copy constructor

	/// Constructor from a file (see \c sauve(FILE*) )
	explicit Base_val(FILE* ) ;    	   

	~Base_val() ;			    ///< Destructor


    // Mutators / assignment
    // ---------------------
    public:
	void set_base_nondef() ;    ///< Sets the spectral bases to \c NONDEF 

	/** Sets the expansion basis for \e r  (\f$\xi\f$) functions in a 
	 *  given domain.
	 *  
	 *  @param l	    Domain index
	 *  @param base_r   type of basis functions in \e r  (\f$\xi\f$)
	 *		    (e.g. \c R_CHEB_P , etc..., 
	 *		     see general documentation of class \c Base_val 
	 *		     for denomination of the various bases). 
	 */
	void set_base_r(int l, int base_r) ; 

	/** Sets the expansion basis for \f$\theta\f$ functions in all
	 *  domains.
	 *  
	 *  @param base_t   type of basis functions in \f$\theta\f$
	 *		    (e.g. \c T_COS_P , etc..., 
	 *		     see general documentation of class \c Base_val 
	 *		     for denomination of the various bases). 
	 */
	void set_base_t(int base_t) ; 

	/** Sets the expansion basis for \f$\phi\f$ functions in all
	 *  domains.
	 *  
	 *  @param base_p   type of basis functions in \f$\phi\f$
	 *		    (e.g. \c P_COSSIN , etc..., 
	 *		     see general documentation of class \c Base_val 
	 *		     for denomination of the various bases). 
	 */
	void set_base_p(int base_p) ; 

	void operator=(const Base_val& ) ;	///< Assignment
    
    // Accessors
    // ---------
    public:
	bool operator==(const Base_val& ) const ;  ///< Comparison operator

	/// Returns the code for the expansion basis in domain no. \c l 
	int get_b(int l) const {
	    assert( (l>=0) && (l<nzone) ) ;
	    return b[l] ; 
	}

	/** Returns the expansion basis for \e r  (\f$\xi\f$) functions in the 
	 *  domain of index \c l  
	 *  (e.g. \c R_CHEB_P , etc..., 
	 *   see general documentation of class \c Base_val 
	 *   for denomination of the various bases). 
	 */
	int get_base_r(int l) const {
	    assert( (l>=0) && (l<nzone) ) ;
	    return b[l] & MSQ_R ; 
	} ; 

	/** Returns the expansion basis for \f$\theta\f$ functions in the
	 *  domain of index \c l  
	 *  (e.g. \c T_COS_P , etc..., 
	 *   see general documentation of class \c Base_val 
	 *   for denomination of the various bases). 
	 */
	int get_base_t(int l) const {
	    assert( (l>=0) && (l<nzone) ) ;
	    return b[l] & MSQ_T ; 
	} ; 

	/** Returns the expansion basis for \f$\phi\f$ functions in the 
	 *  domain of index \c l  
	 *  (e.g. \c P_COSSIN , etc..., 
	 *   see general documentation of class \c Base_val 
	 *   for denomination of the various bases). 
	 */
	int get_base_p(int l) const {
	    assert( (l>=0) && (l<nzone) ) ;
	    return b[l] & MSQ_P ; 
	} ; 

	/** Name of the basis function in \e r  (\f$\xi\f$)
	 *
	 *	@param l [input] domain index
	 *	@param k [input] phi index (for the basis in \e r  may depend upon
	 *		the phi index)
	 *	@param j [input] theta index (for the basis in \e r  may depend upon
	 *		the theta index)
	 *	@param i [input] r index
	 *  @param basename [output] string containing the name of the basis function;
	 *		this \c char  array must have a size of (at least) 8 elements
	 *		and must have been allocated before the call
	 *		to \c name_r .
	 */
	void name_r(int l, int k, int j, int i, char* basename) const ; 

	/** Name of the basis function in \f$\theta\f$
	 *
	 *	@param l [input] domain index
	 *	@param k [input] phi index (for the basis in \f$\theta\f$ may depend upon
	 *		the phi index)
	 *	@param j [input] theta index
	 *  @param basename [output] string containing the name of the basis function;
	 *		this \c char  array must have a size of (at least) 8 elements
	 *		and must have been allocated before the call
	 *		to \c name_theta .
	 */
	void name_theta(int l, int k, int j, char* basename) const ; 

	/** Name of the basis function in \f$\varphi\f$
	 *
	 *	@param l [input] domain index
	 *	@param k [input] phi index
	 *  @param basename [output] string containing the name of the basis function;
	 *		this \c char  array must have a size of (at least) 8 elements
	 *		and must have been allocated before the call
	 *		to \c name_phi .
	 */
	void name_phi(int l, int k, char* basename) const ; 


	/** Values of the theta basis functions at the theta collocation points.
	 *  @param l [input] domain index
	 *  @param nt [input] number of theta collocation points 
	 *    (or equivalently number of theta basis functions) in the 
	 *     domain of index \c l 
	 *  @return resu : \c Tbl  3-D containing the values 
	 *    \f$B_i(\theta_j)\f$ of 
	 *    the \c nt  theta basis functions \f$B_i\f$ at the 
	 *    \c nt  collocation points
	 *    \f$\theta_j\f$ in the domain of index \c l . The storage convention
	 *    is the following one : \\
	 *    \c resu(ind_phi,i,j)  = \f$B_i(\theta_j)\f$ with \c ind_phi 
	 *    being a supplementary dimension in case of a dependence in 
	 *    phi of the theta basis : 
	 *    for example, if the theta basis is \c T_COS_P  (no dependence
	 *    in phi), \c resu.get_dim(2)  = 1 and \c ind_phi  can take
	 *    only the value 0; if the theta basis is
	 *    \c T_COSSIN_CP , \c resu.get_dim(2)  = 2, with 
	 *    \c ind_phi  = 0 for \e m even and  
	 *    \c ind_phi  = 1 for \e m odd. 
	 * 
	 */
	const Tbl& theta_functions(int l, int nt) const ; 
	
	/** Values of the phi basis functions at the phi collocation points.
	 *  @param l [input] domain index
	 *  @param np [input] number of phi collocation points 
	 *   (or equivalently number of phi basis functions) in the 
	 *     domain of index \c l 
	 *  @return resu : \c Tbl  2-D containing the values 
	 *    \f$B_i(\phi_k)\f$ of 
	 *    the \c np  phi basis functions \f$B_i\f$ at the \c np  
	 *    collocation points
	 *    \f$\phi_k\f$ in the domain of index \c l . The storage convention
	 *    is the following one : \\
	 *    \c resu(i,k)  = \f$B_i(\phi_k)\f$. 
	 * 
	 */
	const Tbl& phi_functions(int l, int np) const ; 

	/// Returns the number of domains
	int get_nzone() const {return nzone; } ; 
	
     // Manipulation of basis
    // ----------------------
    public:
	/**
	 * The basis is transformed as with a \f$\frac{\partial}{\partial \xi}\f$
	 * operation.
	 */
	void dsdx() ; 
 
	/**
	 * The basis is transformed as with a \f$\frac{1}{\xi}\f$
	 * multiplication.
	 */
	void sx() ;

	/**
	 * The basis is transformed as with a
	 * multiplication by \f$\xi\f$.
	 */
	void mult_x() ;

	/**
	 * The basis is transformed as with a 
	 * \f$\frac{\partial}{\partial \theta}\f$ operation.
	 */
	void dsdt() ;  

	/**
	 * The basis is transformed as with a 
	 * \f$\frac{1}{\sin \theta}\f$ multiplication.
	 */
	void ssint() ;  
  
	/**
	 * The basis is transformed as with a 
	 * \f$\sin \theta\f$ multiplication.
	 */
	void mult_sint() ;  
  
	/**
	 * The basis is transformed as with a 
	 * \f$\cos \theta\f$ multiplication.
	 */
	void mult_cost() ;  
  
	/**
	 * The basis is transformed as with a transformation to 
	 * \f$Y^l_m\f$ basis.
	 */
	void ylm() ;  

	/**
	 * Computes the various quantum numbers and 1d radial base
	 **/
	void give_quant_numbers (int, int, int, 
				 int&, int&, int&) const ;

	/** 
	 * Returns the highest multipole for a given grid.
	 * @param mgrid : the \c Mg3d 
	 * @param lz : the domain to consider
	 * @return the highest multipolar momentum \e l that can be
	 * described by \c this base on the grid.
	 */
	int give_lmax(const Mg3d& mgrid, int lz) const ;

   // Outputs
    // -------
    public:	    
	void sauve(FILE *) const ;	    ///< Save in a file
    
	friend ostream& operator<<(ostream& , const Base_val& ) ; ///< Display	
	friend Base_val operator*(const Base_val&, const Base_val&) ;
};
ostream& operator<<(ostream& , const Base_val& ) ;
/**
 * \defgroup baseval_m Base_val Mathematics
 * \ingroup (spec)
 * @{
 */

/**
 * This operator is used when calling multiplication or division of \c Valeur .
 * It returns the appropriate base, taking into account the symmetry of the result.
 * The calculation propreties are those of the multiplication of -1 for 
 * antisymmetry and 1 for symmetry.
 * 
 * Should the product of the \c Base_val  not be possible, the result is set to
 * \c ETATNONDEF , (state not defined). It would be the case,  for example,  if
 * one and only one of the \c Valeur is given in spherical harmonics.
 * 
 */
Base_val operator*(const Base_val&, const Base_val&) ;

/** @}*/

}
#endif