This file is indexed.

/usr/include/lorene/C++/Include/connection.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/*
 *  Definition of Lorene class Connection
 *
 */

/*
 *   Copyright (c) 2003-2004 Eric Gourgoulhon & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef __CONNECTION_H_ 
#define __CONNECTION_H_ 

/*
 * $Id: connection.h,v 1.14 2014/10/13 08:52:33 j_novak Exp $
 * $Log: connection.h,v $
 * Revision 1.14  2014/10/13 08:52:33  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.13  2004/03/22 13:12:40  j_novak
 * Modification of comments to use doxygen instead of doc++
 *
 * Revision 1.12  2004/01/04 20:50:24  e_gourgoulhon
 * Class Connection: data member delta is now of type Tensor_sym (and no
 *  longer of type Tensor_delta).
 *
 * Revision 1.11  2003/12/30 22:56:40  e_gourgoulhon
 * Replaced member flat_conn (flat connection) by flat_met (flat metric)
 * Added argument flat_met to the constructors of Connection.
 * Suppressed method fait_ricci() (the computation of the Ricci is
 * now devoted to the virtual method ricci()).
 *
 * Revision 1.10  2003/12/27 14:56:20  e_gourgoulhon
 * -- Method derive_cov() suppressed.
 * -- Change of the position of the derivation index from the first one
 *    to the last one in methods p_derive_cov() and p_divergence().
 *
 * Revision 1.9  2003/10/16 14:21:33  j_novak
 * The calculation of the divergence of a Tensor is now possible.
 *
 * Revision 1.8  2003/10/06 13:58:45  j_novak
 * The memory management has been improved.
 * Implementation of the covariant derivative with respect to the exact Tensor
 * type.
 *
 * Revision 1.7  2003/10/06 06:52:26  e_gourgoulhon
 * Corrected documentation.
 *
 * Revision 1.6  2003/10/05 21:04:25  e_gourgoulhon
 * Improved comments
 *
 * Revision 1.5  2003/10/03 14:07:23  e_gourgoulhon
 * Added derived class Connection_fcart.
 *
 * Revision 1.4  2003/10/02 21:31:11  e_gourgoulhon
 * Added methods fait_delta and update
 * flat_conn is now a modifiable pointer.
 *
 * Revision 1.3  2003/10/02 15:44:23  j_novak
 * The destructor is now public...
 *
 * Revision 1.2  2003/10/01 15:41:49  e_gourgoulhon
 * Added mapping
 *
 * Revision 1.1  2003/09/29 21:14:10  e_gourgoulhon
 * First version --- not ready yet.
 *
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/connection.h,v 1.14 2014/10/13 08:52:33 j_novak Exp $
 *
 */


// Lorene headers
#include "tensor.h"

namespace Lorene {
class Metric ; 
class Metric_flat ; 

				//--------------------------//
				//     class Connection     // 
				//--------------------------//

/**
 * Class Connection. \ingroup (tensor)
 *
 * This class deals only with torsion-free connections. 
 * 
 * Note that we use the MTW convention for the indices of the connection 
 * coefficients with respect to a given triad \f$(e_i)\f$:
 * \f[
 *  \Gamma^i_{\ jk} := \langle e^i, \nabla_{e_k} \, e_j \rangle 
 * \f] 
 *  
 */
class Connection {

    // Data : 
    // -----
    protected:

	const Map* const mp ;	///< Reference mapping

	/** Triad \f$(e_i)\f$ with respect to which the connection coefficients 
	 * are defined.
	 */
	const Base_vect* const triad ; 
	
	/** Tensor \f$\Delta^i_{\ jk}\f$ which defines
	 *  the connection with respect to the flat one: \f$\Delta^i_{\ jk}\f$ 
	 * is the difference between the connection coefficients 
	 *  \f$\Gamma^i_{\ jk}\f$ and
	 * the connection coefficients \f${\bar \Gamma}^i_{\ jk}\f$ of the
	 * flat connection. The connection coefficients with respect to the 
	 * triad \f$(e_i)\f$ are defined
	 * according to the MTW convention:
	 * \f[
	 *  \Gamma^i_{\ jk} := \langle e^i, \nabla_{e_k} \, e_j \rangle
	 * \f] 
         * Note that \f$\Delta^i_{\ jk}\f$ is symmetric with respect to the
         * indices j and k.
	 *
	 */
	Tensor_sym delta ; 

	/** Indicates whether the connection is associated with a metric
	 *  (in which case the Ricci tensor is symmetric, i.e. the
	 *	  actual type of \c p_ricci  is a \c Sym_tensor )
	 */
	bool assoc_metric ;


	private:

	/** Flat metric with respect to which \f$\Delta^i_{\ jk}\f$ 
	 *   (member \c delta ) is defined. 
	 *
	 */
	const Metric_flat* flat_met ;


    // Derived data : 
    // ------------
    protected:

	/// Pointer of the Ricci tensor associated with the connection 
	mutable Tensor* p_ricci ;   

    // Constructors - Destructor
    // -------------------------
    public:
	
	/** Standard constructor ab initio.
	 *
	 * @param delta_i tensor \f$\Delta^i_{\ jk}\f$ which defines
	 *  the connection with respect to the flat one: \f$\Delta^i_{\ jk}\f$ 
	 * is the difference between the connection coefficients 
	 *  \f$\Gamma^i_{\ jk}\f$ and
	 * the connection coefficients \f${\bar \Gamma}^i_{\ jk}\f$ of the
	 * flat connection. The connection coefficients with respect to the 
	 * triad \f$(e_i)\f$ are defined according to the MTW convention:
	 * \f[
	 *  \Gamma^i_{\ jk} := \langle e^i, \nabla_{e_k} \, e_j \rangle
	 * \f] 
         * \f$\Delta^i_{\ jk}\f$ must be symmetric with respect to the
         * indices j and k.
         * @param flat_met_i flat metric with respect to which \f$\Delta^i_{\ jk}\f$
         *   is defined
	 *
	 */
	Connection(const Tensor_sym& delta_i, const Metric_flat& flat_met_i) ;		
	
	/** Standard constructor for a connection associated with a metric. 
	 *
	 * @param met  Metric to which the connection will be associated
         * @param flat_met_i flat metric to define the \f$\Delta^i_{\ jk}\f$
         *  representation of the connection 
	 *
	 */
	Connection(const Metric& met, const Metric_flat& flat_met_i) ;		
	
	Connection(const Connection& ) ;		///< Copy constructor
	
	protected:

	/// Constructor for derived classes
	Connection(const Map&, const Base_vect& ) ; 		

        public:
	virtual ~Connection() ;			///< Destructor
 

    // Memory management
    // -----------------
    protected:	    

	/// Deletes all the derived quantities
	void del_deriv() const ; 
	
	/// Sets to \c 0x0  all the pointers on derived quantities
	void set_der_0x0() const ; 


    // Mutators / assignment
    // ---------------------
    public:

	/// Assignment to another \c Connection 
	void operator=(const Connection&) ;	
	
	/** Update the connection when it is defined ab initio.
	 *
	 * @param delta_i tensor \f$\Delta^i_{\ jk}\f$ which defines
	 *  the connection with respect to the flat one: \f$\Delta^i_{\ jk}\f$ 
	 * is the difference between the connection coefficients 
	 *  \f$\Gamma^i_{\ jk}\f$ and
	 * the connection coefficients \f${\bar \Gamma}^i_{\ jk}\f$ of the
	 * flat connection. 
         * \f$\Delta^i_{\ jk}\f$ must be symmetric with respect to the
         * indices j and k.
	 */
	void update(const Tensor_sym& delta_i) ;		
	
	/** Update the connection when it is associated with a metric. 
	 *
	 * @param met  Metric to which the connection is associated
	 *
	 */
	void update(const Metric& met) ;
	

    // Accessors
    // ---------
    public:
	/// Returns the mapping
	const Map& get_mp() const {return *mp; } ;  


	/** Returns the tensor \f$\Delta^i_{\ jk}\f$ which defines
	 *  the connection with respect to the flat one: \f$\Delta^i_{\ jk}\f$ 
	 * is the difference between the connection coefficients 
	 *  \f$\Gamma^i_{\ jk}\f$ and
	 * the connection coefficients \f${\bar \Gamma}^i_{\ jk}\f$ of the
	 * flat connection. The connection coefficients with respect to the 
	 * triad \f$(e_i)\f$ are defined according to the MTW convention:
	 * \f[
	 *  \Gamma^i_{\ jk} := \langle e^i, \nabla_{e_k} \, e_j \rangle
	 * \f] 
         * Note that \f$\Delta^i_{\ jk}\f$ is symmetric with respect to the
         * indices j and k.
	 *
	 * @return \c delta}(i,j,k) = \f$\Delta^i_{\ jk}\f$
	 */
	const Tensor_sym& get_delta() const {return delta; } ; 

	// Computational methods
	// ---------------------
	
	public: 

	/** Computes the covariant derivative \f$\nabla T\f$ of a tensor \f$T\f$
	 * (with respect to the current connection). 
         * 
         * The extra index (with respect to the indices of \f$T\f$)
         * of \f$\nabla T\f$ is chosen to be the \b last  one.
         * This convention agrees with that of MTW (see Eq. (10.17) of MTW).
         * For instance, if \f$T\f$ is a 1-form, whose components
         * w.r.t. the triad \f$e^i\f$ are \f$T_i\f$: \f$T=T_i \; e^i\f$,
         * then the covariant derivative of \f$T\f$ is the bilinear form
         * \f$\nabla T\f$ whose components \f$\nabla_j T_i\f$ are
         * such that 
         * \f[
         *  \nabla T = \nabla_j T_i \; e^i \otimes e^j
         * \f]
         *
         * @param tens tensor \f$T\f$
         * @return pointer on the covariant derivative \f$\nabla T\f$ ; 
         * this pointer is
         * polymorphe, i.e. it is a pointer on a \c Vector 
         * if the argument is a \c Scalar , and on a \c Tensor  otherwise.
         * NB: The corresponding memory is allocated by the method 
         * \c p_derive_cov()  and 
         * must be deallocated by the user afterwards. 
	 */
	virtual Tensor* p_derive_cov(const Tensor& tens) const ; 

	/** Computes the divergence of a tensor \f$T\f$
	 * (with respect to the current connection). 
         * The divergence is taken with respect of the last index of \f$T\f$
         * which thus must be contravariant.
         * For instance if \f$T\f$ is a twice contravariant tensor, whose 
         * components w.r.t. the
         * triad \f$e_i\f$ are \f$T^{ij}\f$: \f$T = T^{ij} \; e_i \otimes e_j\f$,
         * the divergence of \f$T\f$ is the vector 
         * \f[
         *   {\rm div}\, T = \nabla_k T^{ik} \; e_i
         * \f]
         * where \f$\nabla\f$ denotes the current connection. 
         * @param tens tensor \f$T\f$
         * @return pointer on the divergence of \f$T\f$ ; 
         * this pointer is
         * polymorphe, i.e. its is a pointer on a \c Scalar 
         * if \f$T\f$ is a \c Vector , on a \c Vector  if \f$T\f$ is a tensor
         * of valence 2, and on a \c Tensor  otherwise.
         * NB: The corresponding memory is allocated by the method 
         * \c p_divergence()  and 
         * must be deallocated by the user afterwards. 
	 */
	virtual Tensor* p_divergence(const Tensor& tens) const ; 

	/** Computes (if not up to date) and returns the Ricci tensor 
         * associated with the current connection
         */
	virtual const Tensor& ricci() const ; 
	
	private:
	/** Computes the difference \f$\Delta^i_{\ jk}\f$ between the
	 *  connection coefficients and that a the flat connection
	 *  in the case where the current connection is associated
	 *  with a metric
	 */
	void fait_delta(const Metric& ) ;  

};


				//-------------------------------//
				//     class Connection_flat     // 
				//-------------------------------//

/**
 * Class Connection_flat. \ingroup (tensor)
 *
 * Abstract class for connections associated with a flat metric. 
 * 
 */
class Connection_flat : public Connection {

  // Constructors - Destructor
  // -------------------------
 protected:
  
  /// Contructor from a triad, has to be defined in the derived classes
  Connection_flat(const Map&, const Base_vect&) ; 

 public:

	Connection_flat(const Connection_flat & ) ;	///< Copy constructor

  virtual ~Connection_flat() ; ///< destructor


  // Mutators / assignment
  // ---------------------
 public:

  /// Assignment to another \c Connection_flat 
  void operator=(const Connection_flat&) ;	
  

  // Computational methods
  // ---------------------
  
 public: 

	/** Computes the covariant derivative \f$\nabla T\f$ of a tensor \f$T\f$
	 * (with respect to the current connection). 
         * 
         * The extra index (with respect to the indices of \f$T\f$)
         * of \f$\nabla T\f$ is chosen to be the \b last  one.
         * This convention agrees with that of MTW (see Eq. (10.17) of MTW).
         * For instance, if \f$T\f$ is a 1-form, whose components
         * w.r.t. the triad \f$e^i\f$ are \f$T_i\f$: \f$T=T_i \; e^i\f$,
         * then the covariant derivative of \f$T\f$ is the bilinear form
         * \f$\nabla T\f$ whose components \f$\nabla_j T_i\f$ are
         * such that 
         * \f[
         *  \nabla T = \nabla_j T_i \; e^i \otimes e^j
         * \f]
         *
         * @param tens tensor \f$T\f$
         * @return pointer on the covariant derivative \f$\nabla T\f$ ; 
         * this pointer is
         * polymorphe, i.e. it is a pointer on a \c Vector 
         * if the argument is a \c Scalar , and on a \c Tensor  otherwise.
         * NB: The corresponding memory is allocated by the method 
         * \c p_derive_cov()  and 
         * must be deallocated by the user afterwards. 
	 */
        virtual Tensor* p_derive_cov(const Tensor& tens) const = 0 ; 

	/** Computes the divergence of a tensor \f$T\f$
	 * (with respect to the current connection). 
         * The divergence is taken with respect of the last index of \f$T\f$
         * which thus must be contravariant.
         * For instance if \f$T\f$ is a twice contravariant tensor, whose 
         * components w.r.t. the
         * triad \f$e_i\f$ are \f$T^{ij}\f$: \f$T = T^{ij} \; e_i \otimes e_j\f$,
         * the divergence of \f$T\f$ is the vector 
         * \f[
         *   {\rm div} T = \nabla_k T^{ik} \; e_i
         * \f]
         * where \f$\nabla\f$ denotes the current connection. 
         * @param tens tensor \f$T\f$
         * @return pointer on the divergence of \f$T\f$ ; 
         * this pointer is
         * polymorphe, i.e. its is a pointer on a \c Scalar 
         * if \f$T\f$ is a \c Vector , on a \c Vector  if \f$T\f$ is a tensor
         * of valence 2, and on a \c Tensor  otherwise.
         * NB: The corresponding memory is allocated by the method 
         * \c p_divergence()  and 
         * must be deallocated by the user afterwards. 
	 */
        virtual Tensor* p_divergence(const Tensor& tens) const = 0 ; 

	/** Computes (if not up to date) and returns the Ricci tensor 
         * associated with the current connection
         */
	virtual const Tensor& ricci() const ; 
	
};


				//-------------------------------//
				//     class Connection_fspher   // 
				//-------------------------------//

/**
 * Class Connection_fspher.\ingroup (tensor)
 *
 * Class for connections associated with a flat metric and given onto
 * an orthonormal spherical triad. 
 * 
 */
class Connection_fspher : public Connection_flat {

  // Constructors - Destructor
  // -------------------------
  
 public:

  /// Contructor from a spherical flat-metric-orthonormal basis
	Connection_fspher(const Map&, const Base_vect_spher&) ; 

	Connection_fspher(const Connection_fspher& ) ;		///< Copy constructor
	
 public:

  virtual ~Connection_fspher() ; ///<destructor


  // Mutators / assignment
  // ---------------------
 public:

  /// Assignment to another \c Connection_fspher 
  void operator=(const Connection_fspher&) ;	
  

  // Computational methods
  // ---------------------
  
 public: 
	/** Computes the covariant derivative \f$\nabla T\f$ of a tensor \f$T\f$
	 * (with respect to the current connection). 
         * 
         * The extra index (with respect to the indices of \f$T\f$)
         * of \f$\nabla T\f$ is chosen to be the \b last  one.
         * This convention agrees with that of MTW (see Eq. (10.17) of MTW).
         * For instance, if \f$T\f$ is a 1-form, whose components
         * w.r.t. the triad \f$e^i\f$ are \f$T_i\f$: \f$T=T_i \; e^i\f$,
         * then the covariant derivative of \f$T\f$ is the bilinear form
         * \f$\nabla T\f$ whose components \f$\nabla_j T_i\f$ are
         * such that 
         * \f[
         *  \nabla T = \nabla_j T_i \; e^i \otimes e^j
         * \f]
         *
         * @param tens tensor \f$T\f$
         * @return pointer on the covariant derivative \f$\nabla T\f$ ; 
         * this pointer is
         * polymorphe, i.e. it is a pointer on a \c Vector 
         * if the argument is a \c Scalar , and on a \c Tensor  otherwise.
         * NB: The corresponding memory is allocated by the method 
         * \c p_derive_cov()  and 
         * must be deallocated by the user afterwards. 
	 */
	virtual Tensor* p_derive_cov(const Tensor& tens) const ; 

	/** Computes the divergence of a tensor \f$T\f$
	 * (with respect to the current connection). 
         * The divergence is taken with respect of the last index of \f$T\f$
         * which thus must be contravariant.
         * For instance if \f$T\f$ is a twice contravariant tensor, whose 
         * components w.r.t. the
         * triad \f$e_i\f$ are \f$T^{ij}\f$: \f$T = T^{ij} \; e_i \otimes e_j\f$,
         * the divergence of \f$T\f$ is the vector 
         * \f[
         *   {\rm div} T = \nabla_k T^{ik} \; e_i
         * \f]
         * where \f$\nabla\f$ denotes the current connection. 
         * @param tens tensor \f$T\f$
         * @return pointer on the divergence of \f$T\f$ ; 
         * this pointer is
         * polymorphe, i.e. its is a pointer on a \c Scalar 
         * if \f$T\f$ is a \c Vector , on a \c Vector  if \f$T\f$ is a tensor
         * of valence 2, and on a \c Tensor  otherwise.
         * NB: The corresponding memory is allocated by the method 
         * \c p_divergence()  and 
         * must be deallocated by the user afterwards. 
	 */
	virtual Tensor* p_divergence(const Tensor& tens) const ; 
  
};



				//-------------------------------//
				//     class Connection_fcart    // 
				//-------------------------------//

/**
 * Class Connection_fcart.\ingroup (tensor)
 *
 * Class for connections associated with a flat metric and given onto
 * an orthonormal Cartesian triad. 
 * 
 */
class Connection_fcart : public Connection_flat {

  // Constructors - Destructor
  // -------------------------
  
 public:

  /// Contructor from a Cartesian flat-metric-orthonormal basis
	Connection_fcart(const Map&, const Base_vect_cart&) ; 

	Connection_fcart(const Connection_fcart& ) ;		///< Copy constructor
	
 public:

  virtual ~Connection_fcart() ; ///<destructor


  // Mutators / assignment
  // ---------------------
 public:

  /// Assignment to another \c Connection_fcart 
  void operator=(const Connection_fcart&) ;	
  

  // Computational methods
  // ---------------------
  
 public: 
	/** Computes the covariant derivative \f$\nabla T\f$ of a tensor \f$T\f$
	 * (with respect to the current connection). 
         * 
         * The extra index (with respect to the indices of \f$T\f$)
         * of \f$\nabla T\f$ is chosen to be the \b last  one.
         * This convention agrees with that of MTW (see Eq. (10.17) of MTW).
         * For instance, if \f$T\f$ is a 1-form, whose components
         * w.r.t. the triad \f$e^i\f$ are \f$T_i\f$: \f$T=T_i \; e^i\f$,
         * then the covariant derivative of \f$T\f$ is the bilinear form
         * \f$\nabla T\f$ whose components \f$\nabla_j T_i\f$ are
         * such that 
         * \f[
         *  \nabla T = \nabla_j T_i \; e^i \otimes e^j
         * \f]
         *
         * @param tens tensor \f$T\f$
         * @return pointer on the covariant derivative \f$\nabla T\f$ ; 
         * this pointer is
         * polymorphe, i.e. it is a pointer on a \c Vector 
         * if the argument is a \c Scalar , and on a \c Tensor  otherwise.
         * NB: The corresponding memory is allocated by the method 
         * \c p_derive_cov()  and 
         * must be deallocated by the user afterwards. 
	 */
	virtual Tensor* p_derive_cov(const Tensor& tens) const ; 

	/** Computes the divergence of a tensor \f$T\f$
	 * (with respect to the current connection). 
         * The divergence is taken with respect of the last index of \f$T\f$
         * which thus must be contravariant.
         * For instance if \f$T\f$ is a twice contravariant tensor, whose 
         * components w.r.t. the
         * triad \f$e_i\f$ are \f$T^{ij}\f$: \f$T = T^{ij} \; e_i \otimes e_j\f$,
         * the divergence of \f$T\f$ is the vector 
         * \f[
         *   {\rm div} T = \nabla_k T^{ik} \; e_i
         * \f]
         * where \f$\nabla\f$ denotes the current connection. 
         * @param tens tensor \f$T\f$
         * @return pointer on the divergence of \f$T\f$ ; 
         * this pointer is
         * polymorphe, i.e. its is a pointer on a \c Scalar 
         * if \f$T\f$ is a \c Vector , on a \c Vector  if \f$T\f$ is a tensor
         * of valence 2, and on a \c Tensor  otherwise.
         * NB: The corresponding memory is allocated by the method 
         * \c p_divergence()  and 
         * must be deallocated by the user afterwards. 
	 */
	virtual Tensor* p_divergence(const Tensor& tens) const ; 

  
};




}
#endif