This file is indexed.

/usr/include/lorene/C++/Include/eos_multi_poly.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/*
 *  Definition of Lorene class Eos_multi_poly
 *
 */

/*
 *   Copyright (c) 2009 Keisuke Taniguchi
 *   Copyright (c) 2004 Keisuke Taniguchi
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef __EOS_MULTI_POLY_H_
#define __EOS_MULTI_POLY_H_

/*
 * $Id: eos_multi_poly.h,v 1.6 2014/10/13 08:52:33 j_novak Exp $
 * $Log: eos_multi_poly.h,v $
 * Revision 1.6  2014/10/13 08:52:33  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.5  2014/10/06 15:09:39  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.4  2009/06/23 14:33:31  k_taniguchi
 * Completely revised.
 *
 * Revision 1.3  2004/05/14 11:35:17  k_taniguchi
 * Minor changes in some comments.
 *
 * Revision 1.2  2004/05/07 13:04:01  j_novak
 * Forgotten #include<assert.h>
 *
 * Revision 1.1  2004/05/07 08:09:56  k_taniguchi
 * Initial revision
 *
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/eos_multi_poly.h,v 1.6 2014/10/13 08:52:33 j_novak Exp $
 *
 */

// Standard C++
#include "headcpp.h"

// Headers C
#include <cstdio>
#include <cassert>

// Lorene classes
#include "eos.h"
#include "param.h"
namespace Lorene {
class Tbl ;
class Cmp ;
class Param ;
class Eos ;

	       //-------------------------------------------//
	       //   base class Eos for multiple polytrope   //
	       //-------------------------------------------//

/**
 * Base class for a multiple polytropic equation of state.
 *
 * This equation of state mimics some realistic, tabulated EOSs.
 * \ingroup (eos)
 * 
 */
class Eos_multi_poly : public Eos {

    // Data : 
    // -----

    protected:
	/// Number of polytropic equations of state
	int npeos ;

	/// Array (size: \c npeos) of adiabatic index \f$\gamma\f$
	double* gamma ;

	/** Pressure coefficient for the crust
	 *   [unit: \f$({\rm g/cm^3})^{1-\gamma_0}\f$]
	 */
	double kappa0 ;

	/// Exponent of the pressure at the fiducial density \f$\rho_1\f$
	double logP1 ;

	/// Array (size: \c npeos - 1) of the exponent of fiducial densities
	double* logRho ;

	/** Array (size: \c npeos) of pressure coefficient \f$\kappa\f$
	 *   [unit: \f$\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma\f$],
	 *   where
	 *   \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$ and
	 *   \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$.
	 */
	double* kappa ;

	/** Array (size \c npeos - 1) of the number density
	 *   at which the polytropic EOS changes its index and constant
	 */
	double* nbCrit ;

	/** Array (size \c npeos - 1) of the critical enthalpy
	 *   at which the polytropic EOS changes its index and constant
	 */
	double* entCrit ;

	/** Array (size \c npeos - 1) of the percentage which detemines
	 *   the terminating enthalpy for lower density and the starting
	 *   enthalpy for higher density
	 */
	double* decInc ;

	/** Individual particule mass \f$m0\f$
	 *   [unit: \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$].
	 */
	double m0 ;

	/** Array (size: \c npeos) of the relativistic chemical potential
	 *   at zero pressure
	 *   [unit: \f$m_B c^2\f$,
	 *          with \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$].
         * (The value for the EOS which covers the lowest density: 1)
        */
        double* mu0 ;


    // Constructors - Destructor
    // -------------------------
    public:
	/** Standard constructor (sets \c m0 to 1).
	 *
	 *  The individual particle mass \f$m0\f$ is set to the mean baryon
	 *  mass \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$.
	 *
	 *  @param npoly  number of polytropes
	 *  @param gamma_i  array of adiabatic index \f$\gamma\f$
	 *  @param kappa0_i  pressure coefficient for the crust
	 *  @param logP1_i exponent of the pressure at the fiducial density
	 *  @param logRho_i array of the exponent of fiducial densities
	 *  @param decInc_i array of percentage
	 */
	Eos_multi_poly(int npoly, double* gamma_i, double kappa0_i,
		       double logP1_i, double* logRho_i, double* decInc_i) ;

	Eos_multi_poly(const Eos_multi_poly& ) ;     ///< Copy constructor

    protected:
	/** Constructor from a binary file (created by the function 
	 *  \c sauve(FILE*) ). 
	 *  This constructor is protected because any EOS construction
	 *  from a binary file must be done via the function 
	 *  \c Eos::eos_from_file(FILE*) . 
	 */
	Eos_multi_poly(FILE* ) ;    		

	/** Constructor from a formatted file.
	 *  This constructor is protected because any EOS construction
	 *  from a formatted file must be done via the function 
	 *  \c Eos::eos_from_file(ifstream&) . 
	 */
	Eos_multi_poly(ifstream& ) ;

	/// The construction functions from a file
	friend Eos* Eos::eos_from_file(FILE* ) ;
	friend Eos* Eos::eos_from_file(ifstream& ) ;

    public:
	virtual ~Eos_multi_poly() ;			///< Destructor
 

    // Assignment
    // ----------
    public:
	/// Assignment to another \c Eos_multi_poly
	void operator=(const Eos_multi_poly&) ;	

	/// Read/write kappa
	//	double& set_kappa(int n) ;


    // Miscellaneous
    // -------------
    public:
	/// Comparison operator (egality)
	virtual bool operator==(const Eos& ) const ;

	/// Comparison operator (difference)
	virtual bool operator!=(const Eos& ) const ;

	/** Returns a number to identify the sub-classe of \c Eos
	 *  the object belongs to.
	 */
	virtual int identify() const ;

	/// Returns the number of polytropes \c npeos
	const int& get_npeos() const { return npeos ; } ;

	/// Returns the adiabatic index \f$\gamma\f$
	const double& get_gamma(int n) const { 
	    assert(n>=0 && n<npeos) ;
	    return gamma[n] ;
	} ;

	/// Returns the pressure coefficient for the crust
	const double& get_kappa0() const { return kappa0 ; } ;

	/// Returns the exponent of the pressure at the fiducial density
	const double& get_logP1() const { return logP1 ; } ;

	/// Returns the exponent of fiducial densities
	const double& get_logRho(int n) const {
	    assert(n>=0 && n<npeos-1) ;
	    return logRho[n] ;
	} ;

	/** Returns the pressure coefficient \f$\kappa\f$
	 *  [unit: \f$\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma\f$],
	 *  where
	 *  \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$ and
	 *  \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$.
	 */
	const double& get_kappa(int n) const { 
	    assert(n>=0 && n<npeos) ;
	    return kappa[n] ;
	} ;

	/// Returns the critical number density
	const double& get_nbCrit(int n) const { 
	    assert(n>=0 && n<npeos-1) ;
	    return nbCrit[n] ;
	} ;

	/// Returns the critical enthalpy
	const double& get_entCrit(int n) const { 
	    assert(n>=0 && n<npeos-1) ;
	    return entCrit[n] ;
	} ;

    protected:
	/// Computes the auxiliary quantities
	void set_auxiliary() ;


    // Outputs
    // -------
    public:
	virtual void sauve(FILE *) const ;	    ///< Save in a file
    
    protected: 
	virtual ostream& operator>>(ostream &) const ;    ///< Operator >>


    // Computational functions
    // -----------------------
    public:
	/** Computes the baryon density from the log-enthalpy.
	 *
	 *  @param ent [input, unit: \f$c^2\f$] log-enthalpy \e H
	 *
	 *  @param par possible extra parameters of the EOS
	 *  @return baryon density \e n
	 *      [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *
	 */
    	virtual double nbar_ent_p(double ent, const Param* par=0x0) const ;

	/** Computes the total energy density from the log-enthalpy.
	 *
	 *  @param ent [input, unit: \f$c^2\f$] log-enthalpy \e H
	 *
	 *  @param par possible extra parameters of the EOS
	 *  @return energy density \e e  [unit: \f$\rho_{\rm nuc} c^2\f$],
	 *      where \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double ener_ent_p(double ent, const Param* par=0x0) const ;

	/** Computes the pressure from the log-enthalpy.
	 *
	 *  @param ent [input, unit: \f$c^2\f$] log-enthalpy \e H
	 *
	 *  @param par possible extra parameters of the EOS
	 *  @return pressure \e p [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double press_ent_p(double ent, const Param* par=0x0) const ;

	/** Computes the logarithmic derivative \f$d\ln n/d\ln H\f$
	 *   from the log-enthalpy.
	 *
	 *  @param ent [input, unit: \f$c^2\f$] log-enthalpy \e H
	 *
	 *  @param par possible extra parameters of the EOS
	 *  @return dln(n)/dln(H)
	 */
    	virtual double der_nbar_ent_p(double ent, const Param* par=0x0) const ;

	/** Computes the logarithmic derivative \f$d\ln e/d\ln H\f$
	 *   from the log-enthalpy.
	 * 
	 *  @param ent [input, unit: \f$c^2\f$] log-enthalpy \e H
	 *
	 *  @param par possible extra parameters of the EOS
	 *  @return dln(e)/dln(H)
	 */
    	virtual double der_ener_ent_p(double ent, const Param* par=0x0) const ;

	/** Computes the logarithmic derivative \f$d\ln p/d\ln H\f$
	 *   from the log-enthalpy.
	 *
	 *  @param ent [input, unit: \f$c^2\f$] log-enthalpy \e H
	 *
	 *  @param par possible extra parameters of the EOS
	 *  @return dln(p)/dln(H)
	 */
    	virtual double der_press_ent_p(double ent, const Param* par=0x0) const ;

	/** Computes the logarithmic derivative \f$d\ln p/d\ln n\f$
	 *   from the log-enthalpy.
	 *
	 *  @param ent [input, unit: \f$c^2\f$] log-enthalpy \e H
	 *
	 *  @param par possible extra parameters of the EOS
	 *  @return dln(p)/dln(n)
	 */
    	virtual double der_press_nbar_p(double ent, const Param* par=0x0) const ;
};

}
#endif