This file is indexed.

/usr/include/lorene/C++/Include/et_rot_bifluid.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/*
 *  Definition of Lorene class Et_rot_bifluid
 *
 */

/*
 *   Copyright (c) 2001 Jerome Novak
 *             (c) 2015 Aurelien Sourie
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


#ifndef __ET_ROT_BIFLUID_H_ 
#define __ET_ROT_BIFLUID_H_ 

/*
 * $Id: et_rot_bifluid.h,v 1.20 2015/06/26 14:10:08 j_novak Exp $
 * $Log: et_rot_bifluid.h,v $
 * Revision 1.20  2015/06/26 14:10:08  j_novak
 * Modified comments.
 *
 * Revision 1.19  2015/06/11 13:50:18  j_novak
 * Minor corrections
 *
 * Revision 1.18  2015/06/10 14:39:17  a_sourie
 * New class Eos_bf_tabul for tabulated 2-fluid EoSs and associated functions for the computation of rotating stars with such EoSs.
 *
 * Revision 1.17  2014/10/13 08:52:34  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.16  2013/11/25 13:50:55  j_novak
 * The inheritance from Etoile_rot is no longer virtual.
 *
 * Revision 1.15  2011/10/06 14:55:36  j_novak
 * equation_of_state() is now virtual to be able to call to the magnetized
 * Eos_mag.
 *
 * Revision 1.14  2004/09/01 10:56:05  r_prix
 * added option of converging baryon-mass to equilibrium_bi()
 *
 * Revision 1.13  2004/03/22 13:12:41  j_novak
 * Modification of comments to use doxygen instead of doc++
 *
 * Revision 1.12  2003/12/04 14:13:32  r_prix
 * added method get_typeos {return typeos}; and fixed some comments.
 *
 * Revision 1.11  2003/11/20 14:01:45  r_prix
 * changed member names to better conform to Lorene coding standards:
 * J_euler -> j_euler, EpS_euler -> enerps_euler, Delta_car -> delta_car
 *
 * Revision 1.10  2003/11/18 18:32:36  r_prix
 * added new class-member: EpS_euler := ener_euler + s_euler
 * has the advantage of a nice Newtonian limit -> rho
 * (ener_euler is no longer used in this class!)
 *
 * Revision 1.9  2003/11/13 12:02:03  r_prix
 * - adapted/extended some of the documentation
 * - changed xxx2 -> Delta_car
 * - added members J_euler, sphph_euler, representing 3+1 components of Tmunu
 *   (NOTE: these are not 2-fluid specific, and should ideally be moved into Class Etoile!)
 *
 * Revision 1.8  2003/09/17 08:27:50  j_novak
 * New methods: mass_b1() and mass_b2().
 *
 * Revision 1.7  2002/10/09 07:54:29  j_novak
 * Et_rot_bifluid and Et_rot_mag inheritate virtually from Etoile_rot
 *
 * Revision 1.6  2002/09/13 09:17:33  j_novak
 * Modif. commentaires
 *
 * Revision 1.5  2002/04/05 09:09:36  j_novak
 * The inversion of the EOS for 2-fluids polytrope has been modified.
 * Some errors in the determination of the surface were corrected.
 *
 * Revision 1.4  2002/01/16 15:03:28  j_novak
 * *** empty log message ***
 *
 * Revision 1.3  2002/01/08 14:43:53  j_novak
 * better determination of surfaces for 2-fluid stars
 *
 * Revision 1.2  2002/01/03 15:30:27  j_novak
 * Some comments modified.
 *
 * Revision 1.1.1.1  2001/11/20 15:19:27  e_gourgoulhon
 * LORENE
 *
 * Revision 1.3  2001/10/03  09:49:06  novak
 * *** empty log message ***
 *
 * Revision 1.2  2001/08/28 14:14:10  novak
 * overrided l_surf function
 *
 * Revision 1.1  2001/06/22 15:38:52  novak
 * Initial revision
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/et_rot_bifluid.h,v 1.20 2015/06/26 14:10:08 j_novak Exp $
 *
 */

// Headers Lorene
#include "eos_bifluid.h"
#include "etoile.h"

namespace Lorene {

  // Local prototype (for determining the surface)
  Cmp prolonge_c1(const Cmp& uu, const int nzet) ;
  
  /**
   * Class for two-fluid rotating relativistic stars. \ingroup (star)
   * 
   * This is a child class of \c Etoile_rot , with the same metric
   * and overloaded member functions. 
   * 
   * There are two number-density fields \c nbar  and \c nbar2  
   * (and 2 log-enthalpies, see class \c Eos_bifluid ), as well as two 
   * velocity fields, with phi-components (with respect to the Eulerian observer)
   * \c uuu  and \c uuu2 .
   *
   * Fluid 1 can be considered to correspond to the (superfluid) neutrons, whereas 
   * fluid 2 would consist of the protons (and electrons)
   *.
   * The quantity \c u_euler  of the \c class Etoile  is 
   * \b not \b used  in this class!
   * Only the "3+1" components of \f${T^\mu}_\nu\f$ should be used outside
   * of \c hydro_euler() , namely \c s_euler, \c sphph_euler, \c j_euler and 
   * \c ener_euler.
   *
   */
  class Et_rot_bifluid : public Etoile_rot {
    
    // Data : 
    // -----
  protected:
    const Eos_bifluid& eos ; ///< Equation of state for two-fluids model
    
    double omega2 ; ///< Rotation angular velocity for fluid 2 (\c [f_unit] )
    
    // Fluid quantities with respect to the fluid frame
    // ------------------------------------------------
    
    /// Log-enthalpy for the second fluid
    Tenseur ent2 ;
    
    Tenseur nbar2 ; ///< Baryon density in the fluid frame, for fluid 2
    
    Tenseur K_nn ;  ///< Coefficient Knn
    Tenseur K_np ;  ///< Coefficient Knp
    Tenseur K_pp ;  ///< Coefficient Kpp 
    
    // Fluid quantities with respect to the Eulerian frame
    // ---------------------------------------------------
    
    // FIXME: the following three variables are not specific to 2-fluid stars
    //  and should ideally be moved to class Etoile!
    
    /// The component \f$S^\varphi_\varphi\f$ of the stress tensor \f${S^i}_j\f$.
    Tenseur sphph_euler;
    
    /** Total angular momentum (flat-space!) 3-vector \f$J_\mathrm{euler}\f$,
     *  which is related to \f$J^i\f$ of the "3+1" decomposition, but expressed 
     *  in a flat-space triad. In axisymmetric circular cases, only 
     * \f$J_\mathrm{euler}(\varphi)=r \sin\theta\, J^\varphi\f$ is nonzero.
     */
    Tenseur j_euler;
    
    Tenseur j_euler1; ///< To compute Jn
    Tenseur j_euler2; ///< To compute Jp
    
    Tenseur j_euler11_1;  ///< To compute In (1st version)
    Tenseur j_euler12_1;  ///< To compute Ip (1st version)
    
    Tenseur j_euler21_1;// To compute epsN (1st version)
    Tenseur j_euler22_1;// To compute epsP (1st version)

    Tenseur j_euler11_2;//To compute In (2nd version)
    Tenseur j_euler12_2;//To compute Ip (2nd version)
    
    Tenseur j_euler21_2;// To compute epsN (2nd version)
    Tenseur j_euler22_2;// To compute epsP (2nd version)
    

    /// the combination \f$E+S_i^i\f$: useful because in the Newtonian limit \f$\rightarrow \rho\f$.
    Tenseur enerps_euler;
    
    /// Norm of the (fluid no.2) 3-velocity with respect to the eulerian observer
    Tenseur uuu2 ;
    
    /// Lorentz factor between the fluid 2 and Eulerian observers   
    Tenseur gam_euler2 ;
    
    /**
     * The "relative velocity" (squared) \f$\Delta^2\f$ of the two fluids.
     * See Prix et al.(2003) and see also \c Eos_bifluid . 
     */
    Tenseur delta_car ; 
    
    // Derived data : 
    // ------------
  protected:
    /// Coordinate radius at \f$\phi=0\f$, \f$\theta=\pi/2\f$. 
    mutable double* p_ray_eq2 ; 
    
    /// Coordinate radius at \f$\phi=\pi/2\f$, \f$\theta=\pi/2\f$. 
    mutable double* p_ray_eq2_pis2 ;
    
    /// Coordinate radius at \f$\phi=\pi\f$, \f$\theta=\pi/2\f$. 
    mutable double* p_ray_eq2_pi ;
    
    /// Coordinate radius at \f$\theta=0\f$. 
    mutable double* p_ray_pole2 ;
    
    /** Description of the surface of fluid 2: 2-D \c Itbl  containing the 
     *	values of the domain index \e l  on the surface at the 
     *	collocation points in \f$(\theta', \phi')\f$
     */
    mutable Itbl* p_l_surf2 ; 
    
    /** Description of the surface of fluid 2: 2-D \c Tbl  containing the 
     *	values of the radial coordinate \f$\xi\f$ on the surface at the 
     *	collocation points in \f$(\theta', \phi')\f$
     */
    mutable Tbl* p_xi_surf2 ; 
    
    mutable double* p_r_circ2 ;	///< Circumferential radius of fluid no.2
    mutable double* p_area2 ;	///< Surface area of fluid no.2
    mutable double* p_aplat2 ;	///< Flatening r_pole/r_eq of fluid no.2
    
    mutable double* p_mass_b1 ;	///< Baryon mass of fluid 1
    mutable double* p_mass_b2 ;	///< Baryon mass of fluid 2
    
    mutable double* p_angu_mom_1;	///< Angular momentum of fluid 1
    mutable double* p_angu_mom_2;	///< Angular momentum of fluid 2
    
    mutable double* p_angu_mom_1_part1_1;	///< To compute In (1st version)
    mutable double* p_angu_mom_2_part1_1;	///< To compute Ip (1st version)
    
    mutable double* p_angu_mom_1_part2_1;	///< To compute Xn (1st version)
    mutable double* p_angu_mom_2_part2_1;	///< To compute Xp (1st version)
    
    mutable double* p_angu_mom_1_part1_2;	///< To compute In (2nd version)
    mutable double* p_angu_mom_2_part1_2;	///< To compute Ip (2nd version)
    
    mutable double* p_angu_mom_1_part2_2;	///< To compute Xn (2nd version)
    mutable double* p_angu_mom_2_part2_2;	///< To compute Xp (2nd version)

    // Constructors - Destructor
    // -------------------------
  public:
    
    Et_rot_bifluid(Map& mp_i, int nzet_i, bool relat, 
		   const Eos_bifluid& eos_i) ;     ///< Standard constructor
    
    Et_rot_bifluid(const Et_rot_bifluid& ) ;       ///< Copy constructor
    
    /** Constructor from a file (see \c sauve(FILE*) ) Works only for 
     *  relativistic stars.
     *  This has to be improved....
     */ 
    Et_rot_bifluid(Map& mp_i, const Eos_bifluid& eos_i, FILE* fich) ;    
    
    virtual ~Et_rot_bifluid() ;			///< Destructor
    
    // Memory management
    // -----------------
  protected:
    
    /// Deletes all the derived quantities
    virtual void del_deriv() const ; 
    
    /// Sets to \c 0x0  all the pointers on derived quantities
    virtual void set_der_0x0() const ; 
    
    /** Sets to \c ETATNONDEF  (undefined state) the hydrodynamical 
     *  quantities relative to the Eulerian observer.
     */
    virtual void del_hydro_euler() ; 
    
    // Mutators / assignment
    // ---------------------
  public:
    
    /// Assignment to another Et_rot_bifluid
    void operator=(const Et_rot_bifluid&) ;	
    
    /// Sets both enthalpy profiles
    void set_enthalpies(const Cmp&, const Cmp&) ;
    
    /** Computes a spherical static configuration. 
     * 
     *  @param ent_c [input] central value of the enthalpy 1
     *  @param ent_c2 [input] central value of the enthalpy 2
     *  @param precis [input] threshold in the relative difference between 
     *	the enthalpy fields of two consecutive steps
     *	to stop the iterative procedure (default value: 1.e-14)
     */
    void equilibrium_spher_bi(double ent_c, double ent_c2, 
			      double precis = 1.e-14) ;
    
    /** Computes a spherical static configuration. 
     *  The sources for Poisson equations are regularized
     *  by extracting analytical diverging parts.
     * 
     *  @param ent_c [input] central value of the enthalpy 1
     *  @param ent_c2 [input] central value of the enthalpy 2
     *  @param precis [input] threshold in the relative difference between 
     *	the enthalpy fields of two consecutive steps
     *	to stop the iterative procedure (default value: 1.e-14)
     */
    void equil_spher_regular(double ent_c, double ent_c2, 
			     double precis = 1.e-14) ;
    
    // Accessors
    // ---------
  public:
    
    /// Returns the equation of state
    const Eos_bifluid& get_eos() const {return eos; } ;
    
    /// Returns the enthalpy field for fluid 2 
    const Tenseur& get_ent2() const {return ent2 ; } ;
    
    /// Returns the proper baryon density for fluid 2
    const Tenseur& get_nbar2() const {return nbar2 ; } ;
    
    /// Returns the coefficient Knn
    const Tenseur& get_K_nn() const {return K_nn ; } ;
    /// Returns the coefficient Knp
    const Tenseur& get_K_np() const {return K_np ; } ;
    /// Returns the coefficient Kpp
    const Tenseur& get_K_pp() const {return K_pp ; } ;
    
    /// Returns the "relative velocity" (squared) \f$\Delta^2\f$ of the two fluids
    const Tenseur& get_delta_car() const {return delta_car ; } ;
    
    /// Returns the Lorentz factor between the fluid 2 and Eulerian observers
    const Tenseur& get_gam_euler2() const {return gam_euler2 ; } ;
    
    /// Returns the rotation angular velocity of fluid 2(\c [f_unit] ) 
    double get_omega2() const {return omega2 ; } ;

    /// Returns the norm of the fluid 2 3-velocity with respect to the eulerian frame
    const Tenseur& get_uuu2() const {return uuu2 ; } ;
    
    // Outputs
    // -------
  public:
    virtual void sauve(FILE *) const ;	    ///< Save in a file
    
    /// Operator >> (virtual function called by the operator <<). 
    virtual ostream& operator>>(ostream& ) const ;    
    
    /// Printing of some informations, excluding all global quantities
    virtual void partial_display(ostream& ) const ;    
    
    // Global quantities
    // -----------------
  public:
    
    /** Description of the surface of fluid 1: returns a 2-D \c Itbl  
     *	containing the 
     *	values of the domain index \e l  on the surface at the 
     *	collocation points in \f$(\theta', \phi')\f$.
     *	This surface is defined as the location where
     *	the density 1 (member \c nbar ) vanishes.
     */
    virtual const Itbl& l_surf() const ; 
    
    /** Description of the surface of fluid 2: returns a 2-D \c Itbl  
     *	containing the 
     *	values of the domain index \e l  on the surface at the 
     *	collocation points in \f$(\theta', \phi')\f$.
     *	This surface is defined as the location where
     *	the density 2 (member \c nbar2 ) vanishes.
     */
    const Itbl& l_surf2() const ; 
    
    /** Description of the surface of fluid 2: returns a 2-D \c Tbl  
     *	containing the values of the radial coordinate \f$\xi\f$ 
     *	on the surface at the 
     *	collocation points in \f$(\theta', \phi')\f$. 
     *	This surface is defined as the location where
     *	the density 2 (member \c nbar2 ) vanishes.
     */
    const Tbl& xi_surf2() const ; 

    /// Coordinate radius for fluid 2 at \f$\phi=0\f$, \f$\theta=\pi/2\f$ [r_unit].
    double ray_eq2() const ; 
    
    /// Coordinate radius for fluid 2 at \f$\phi=\pi/2\f$, \f$\theta=\pi/2\f$ [r_unit].
    double ray_eq2_pis2() const ; 
    
    /// Coordinate radius for fluid 2 at \f$\phi=\pi\f$, \f$\theta=\pi/2\f$ [r_unit].
    double ray_eq2_pi() const ; 
    
    /// Coordinate radius for fluid 2 at \f$\theta=0\f$ [r_unit]. 
    double ray_pole2() const ; 
    
    /// Baryon mass of fluid 1
    double mass_b1() const ;
    
    /// Baryon mass of fluid 2
    double mass_b2() const ;
    
    virtual double mass_b() const ;	///< Total Baryon mass
    virtual double mass_g() const ;	///< Gravitational mass
    virtual double angu_mom() const ;	///< Angular momentum
    
    /** Error on the virial identity GRV2.
     * Given by the integral Eq. (4.6) in 
     * [Bonazzola, Gougoulhon, Salgado, Marck, A\&A \b 278 , 421 (1993)].
     */
    virtual double grv2() const ;		
    
    /** Error on the virial identity GRV3.
     *  The error is computed as the integral defined
     *  by Eq. (43) of [Gourgoulhon and Bonazzola, 
     *  \a Class. \a Quantum \a Grav. \b 11 , 443 (1994)] divided by
     *  the integral of the matter terms.
     * 
     *  @param ost output stream to give details of the computation;
     *		if set to 0x0 [default value], no details will be
     *		given.
     *   
     */
    virtual double grv3(ostream* ost = 0x0) const ;	
    
    virtual double r_circ2() const ;       ///< Circumferential radius for fluid 2
    virtual double area2() const ;         ///< Surface area for fluid 2
    virtual double mean_radius2() const ;  ///< Mean radius for fluid 2
    virtual double aplat2() const ;        ///< Flatening r_pole/r_eq for fluid 2

    /** Quadrupole moment.
     *  The quadrupole moment \e Q is defined according to Eq. (11) of
     *  [Pappas and Apostolatos, \a Physical \a Review \a Letters 
     *  \b 108, 231104 (2012)]. This is a corrected version of the quadrupole
     *  moment defined by [Salgado, Bonazzola, Gourgoulhon and Haensel,
     *  \a Astron. \a Astrophys. \b 291 , 155 (1994)]. 
     *  Following this definition, \f$Q = {\bar Q } - 4/3 (1/4 + b) M^3 \f$, 
     *  where \f$ {\bar Q } \f$ is defined as the negative of the (wrong) quadrupole 
     *  moment defined in Eq. (7) of [Salgado, Bonazzola, Gourgoulhon and Haensel,
     *  \a Astron. \a Astrophys. \b 291 , 155 (1994)], \e b is defined by
     *  Eq. (3.37) of [Friedman and Stergioulas, \a Rotating \a Relativistic 
     *  \a Stars, Cambridge Monograph on mathematical physics] and \e M is 
     *  the gravitational mass of the star.
     */
    virtual double mom_quad() const ;	
    
    /** Part of the quadrupole moment.
     *  This term \f$ {\bar Q } \f$ is defined by Laarakkers and Poisson,
     *  \a Astrophys. \a J. \b 512 , 282 (1999).
     *  Note that \f$ {\bar Q }\f$ is the negative of the (wrong) quadrupole moment 
     *  defined in Eq. (7) of [Salgado, Bonazzola, Gourgoulhon and Haensel,
     *  \a Astron. \a Astrophys. \b 291 , 155 (1994)]. 
     */
    virtual double mom_quad_old() const ;
    
    /** Part of the quadrupole moment.
     *  \e B_o is defined as \f$bM^2\f$, where \e b is given by Eq. (3.37) of 
     *  [Friedman and Stergioulas, \a Rotating \a Relativistic \a Stars, 
     *  Cambridge Monograph on mathematical physics] and \e M is the 
     *  the gravitational mass of the star. 
     */
    virtual double mom_quad_Bo() const ;
    
    virtual double angu_mom_1() const ;	///< Angular momentum of fluid 1
    virtual double angu_mom_2() const ;	///< Angular momentum of fluid 2
    virtual double angu_mom_1_part1_1() const ;	///< To compute In (1st version)
    virtual double angu_mom_2_part1_1() const ;	///< To compute Ip (1st version)
    virtual double angu_mom_1_part2_1() const ;	///< To compute Xn (1st version)
    virtual double angu_mom_2_part2_1() const ;	///< To compute Xp (1st version)
    virtual double angu_mom_1_part1_2() const ;	///< To compute In (2nd version)
    virtual double angu_mom_2_part1_2() const ;	///< To compute Ip (2nd version)
    virtual double angu_mom_1_part2_2() const ;	///< To compute Xn (2nd version)
    virtual double angu_mom_2_part2_2() const ;	///< To compute Xp (2nd version)

    // Computational routines
    // ----------------------
  public: 
    /** Computes the hydrodynamical quantities relative to the Eulerian
     *  observer from those in the fluid frame.
     *
     *  The calculation is performed starting from the quantities
     *  \c ent , \c ent2 , \c ener , \c press , \c K_nn , \c K_np , \c K_pp 
     *  and \c a_car, which are supposed to be up to date. From these,  
     *  the following fields are updated:
     *  \c delta_car , \c gam_euler , \c gam_euler2 , \c ener_euler , 
     *  \c s_euler , \c sphph_euler  and \c j_euler .
     */
    virtual void hydro_euler() ; 
    
    /** Computes the proper baryon and energy densities, as well as
     *  pressure and the coefficients Knn, Knp and Kpp, from the enthalpies 
     *  and both velocities.
     */
    virtual void equation_of_state() ; 
    
    /** Computes an equilibrium configuration.
     *  
     *  @param ent_c  [input] Central enthalpy for fluid 1 
     *  @param ent_c2 [input] Central enthalpy for fluid 2
     *  @param omega0  [input] Requested angular velocity for fluid 1
     *  @param omega20  [input] Requested angular velocity for fluid 2
     *  @param ent_limit [input] 1-D \c Tbl  of dimension \c nzet  which
     *				defines the enthalpy for fluid 1 at the 
     *                            outer boundary of each domain
     *  @param ent2_limit [input] 1-D \c Tbl  of dimension \c nzet  which
     *				defines the enthalpy for fluid 2 at the 
     *                            outer boundary of each domain
     *  @param icontrol [input] Set of integer parameters (stored as a
     *			    1-D \c Itbl  of size 5) to control the 
     *			    iteration: 
     *	\li \c icontrol(0) = mer_max  : maximum number of steps 
     *	\li \c icontrol(1) = mer_rot  : step at which the rotation is 
     *				      switched on 
     *	\li \c icontrol(2) = mer_change_omega  : step at which the rotation
     *			  velocity is changed to reach the final one  
     *	\li \c icontrol(3) = mer_fix_omega  :  step at which the final
     *			    rotation velocity must have been reached  
     *	\li \c icontrol(4) = mermax_poisson  : maximum number of steps in 
     *				\c Map_et::poisson  
     *  @param control [input] Set of parameters (stored as a 
     *			    1-D \c Tbl  of size 5) to control the 
     *			    iteration: 
     *	\li \c control(0) = precis  : threshold on the enthalpy relative 
     *				change for ending the computation 
     *	\li \c control(1) = omega_ini  : initial angular velocity, 
     *			    switched on only if \c mer_rot < 0 , 
     *			    otherwise 0 is used  
     *	\li \c control(2) = omega2_ini  : initial angular velocity, 
     *			    switched on only if \c mer_rot < 0 , 
     *			    otherwise 0 is used  
     *	\li \c control(3) = relax  : relaxation factor in the main 
     *				   iteration  
     *	\li \c control(4) = relax_poisson  : relaxation factor in 
     *				   \c Map_et::poisson  
     *  @param diff [output]   1-D \c Tbl  of size 8 for the storage of 
     *			    some error indicators : 
     *	    \li \c diff(0)  : Relative change in the enthalpy field 1
     *			      between two successive steps 
     *	    \li \c diff(1)  : Relative change in the enthalpy field 2
     *			      between two successive steps 
     *	    \li \c diff(2)  : Relative error in the resolution of the
     *			    Poisson equation for \c nuf    
     *	    \li \c diff(3)  : Relative error in the resolution of the
     *			    Poisson equation for \c nuq    
     *	    \li \c diff(4)  : Relative error in the resolution of the
     *			    Poisson equation for \c dzeta    
     *	    \li \c diff(5)  : Relative error in the resolution of the
     *			    Poisson equation for \c tggg    
     *	    \li \c diff(6)  : Relative error in the resolution of the
     *			    equation for \c shift  (x comp.)   
     *	    \li \c diff(7)  : Relative error in the resolution of the
     *			    equation for \c shift  (y comp.)   
     */
    void equilibrium_bi(double ent_c, double ent_c2, double omega0, 
			double omega20, const Tbl& ent_limit, 
			const Tbl& ent2_limit, const Itbl& icontrol, 
			const Tbl& control, Tbl& diff,
			int mer_mass, double mbar1_wanted, double mbar2_wanted, 
			double aexp_mass);
  };
  
}
#endif