This file is indexed.

/usr/include/lorene/C++/Include/gravastar.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*
 *  Definition of Lorene class Gravastar
 *				 
 */

/*
 *   Copyright (c) 2010 Frederic Vincent
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


#ifndef __GRAVASTAR_H_ 
#define __GRAVASTAR_H_ 



// Headers Lorene
#include "star_rot.h"

namespace Lorene {
class Eos ;

			//--------------------------//
			//    class Gravastar       //
			//--------------------------//

/**
 * Class for perfect fluid rotating gravastar. \ingroup (star)
 * 
 
 * 
 */
class Gravastar : public Star_rot {

    // Data : 
    // -----
 protected:
  /**
   *  Energy density in gravastar's core
   */
  double rho_core;

    // Derived data : 
    // ------------
    protected:

	 

    // Constructors - Destructor
    // -------------------------
    public:
  /** Standard constructor. 
   * 
   * @param mp_i Mapping on which the gravastar is contructed
   * @param nzet_i Number of domains occupied by the gravastar
   * @param eos_i Equation of state of the crust matter
   * @param rho_core_i Energy density in gravastar's core (constant, =-p_core)
   *                   NB:pas de choix pour l'EOS en fait : a virer??
   */
  Gravastar(Map& mp_i, int nzet_i, const Eos& eos_i, const double rho_core_i) ;
	
	
  Gravastar(const Gravastar& ) ;		///< Copy constructor

	/** Constructor from a file (see \c sauve(FILE*) ). 
	 * 
	 * @param mp_i Mapping on which the gravastar is constructed
	 * @param eos_i Equation of state of the crust matter
	 * @param fich	input file (must have been created by the function
	 *	\c Gravastar::sauve )
	 */
	Gravastar(Map& mp_i, const Eos& eos_i, FILE* fich) ;    		

	~Gravastar() ;			///< Destructor


    // Mutators / assignment
    // ---------------------
    public:
	/// Assignment to another \c Gravastar 
	void operator=(const Gravastar& ) ;

	/** Allows to computes the proper baryon and energy density, as well as
	 *  pressure from the enthalpy, in the gravastar's crust only (in the core,
	 *  p=-rho=cst)
	 */
	void equation_of_state() ; 	

	// Computational routines
	// ----------------------
 public: 

	/** Computes an equilibrium configuration.
	 *  
	 *  @param omega0  [input] Requested angular velocity 
	 *			     (if \c fact_omega=1. )
	 *  @param fact_omega [input] 1.01 = search for the Keplerian frequency,
	 *			      1. = otherwise.
	 *  @param nzadapt  [input] Number of (inner) domains where the mapping 
	 *			    adaptation to an iso-enthalpy surface
	 *			    should be performed
	 *  @param ent_limit [input] 1-D \c Tbl  of dimension \c nzet  which
	 *				defines the enthalpy at the outer boundary
	 *				of each domain
	 *  @param icontrol [input] Set of integer parameters (stored as a
	 *			    1-D \c Itbl  of size 8) to control the 
	 *			    iteration: 
	 *	\li \c icontrol(0) = mer_max  : maximum number of steps 
	 *	\li \c icontrol(1) = mer_rot  : step at which the rotation is 
	 *				      switched on 
	 *	\li \c icontrol(2) = mer_change_omega  : step at which the rotation
	 *			  velocity is changed to reach the final one  
	 *	\li \c icontrol(3) = mer_fix_omega  :  step at which the final
	 *			    rotation velocity must have been reached  
	 *	\li \c icontrol(4) = mer_mass  : the absolute value of 
	 *			    \c mer_mass  is the step from which the 
	 *			    baryon mass is forced to converge, 
	 *			    by varying the central enthalpy 
	 *			    (\c mer_mass>0 ) or the angular 
	 *			    velocity (\c mer_mass<0 ) 
	 *	\li \c icontrol(5) = mermax_poisson  : maximum number of steps in 
	 *				\c Map_et::poisson  
	 *	\li \c icontrol(6) = mer_triax  : step at which the 3-D 
	 *				perturbation is switched on 
	 *	\li \c icontrol(7) = delta_mer_kep  : number of steps
	 *			    after \c mer_fix_omega  when \c omega 
	 *			    starts to be increased by \c fact_omega 
	 *			    to search for the Keplerian velocity
	 * 	 
	 *  @param control [input] Set of parameters (stored as a 
	 *			    1-D \c Tbl  of size 7) to control the 
	 *			    iteration: 
	 *	\li \c control(0) = precis  : threshold on the enthalpy relative 
	 *				change for ending the computation 
	 *	\li \c control(1) = omega_ini  : initial angular velocity, 
	 *			    switched on only if \c mer_rot<0 , 
	 *			    otherwise 0 is used  
	 *	\li \c control(2) = relax  : relaxation factor in the main 
	 *				   iteration  
	 *	\li \c control(3) = relax_poisson  : relaxation factor in 
	 *				   \c Map_et::poisson  
	 *	\li \c control(4) = thres_adapt  :  threshold on dH/dr for 
	 *			    freezing the adaptation of the mapping 
	 *	\li \c control(5) = ampli_triax  :  relative amplitude of 
	 *			    the 3-D perturbation 
	 *	\li \c control(6) = precis_adapt  : precision for 
	 *			    \c Map_et::adapt 
	 *
	 *  @param diff [output]   1-D \c Tbl  of size 7 for the storage of 
	 *			    some error indicators : 
	 *	    \li \c diff(0)  : Relative change in the enthalpy field
	 *			      between two successive steps 
	 *	    \li \c diff(1)  : Relative error in the resolution of the
	 *			    Poisson equation for \c nuf    
	 *	    \li \c diff(2)  : Relative error in the resolution of the
	 *			    Poisson equation for \c nuq    
	 *	    \li \c diff(3)  : Relative error in the resolution of the
	 *			    Poisson equation for \c dzeta    
	 *	    \li \c diff(4)  : Relative error in the resolution of the
	 *			    Poisson equation for \c tggg    
	 *	    \li \c diff(5)  : Relative error in the resolution of the
	 *			    equation for \c shift  (x comp.)   
	 *	    \li \c diff(6)  : Relative error in the resolution of the
	 *			    equation for \c shift  (y comp.)   
	 */
	void equilibrium(double omega0, double fact_omega, 
			 int nzadapt, const Tbl& ent_limit,
			 const Itbl& icontrol, const Tbl& control,
			 Tbl& diff, Param* = 0x0) ;

    // Outputs
    // -------
    public:


    protected:
	/// Operator >> (virtual function called by the operator <<). 
	virtual ostream& operator>>(ostream& ) const ;    
	
};

}
#endif