This file is indexed.

/usr/include/lorene/C++/Include/hoteos.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
/*
 *  Definition of Lorene class Hot_eos.
 *
 */

/*
 *   Copyright (c) 2015 Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef __HOTEOS_H_ 
#define __HOTEOS_H_ 

/*
 * $Id: hoteos.h,v 1.3 2015/12/08 10:52:17 j_novak Exp $
 * $Log: hoteos.h,v $
 * Revision 1.3  2015/12/08 10:52:17  j_novak
 * New class Hoteos_tabul for tabulated temperature-dependent EoSs.
 *
 * Revision 1.2  2015/09/10 13:28:00  j_novak
 * New methods for the class Hot_Eos
 *
 * Revision 1.1  2015/03/17 14:19:59  j_novak
 * New class Hot_eos to deal with temperature-dependent EOSs.
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/hoteos.h,v 1.3 2015/12/08 10:52:17 j_novak Exp $
 *
 */

//C++ headers
#include "headcpp.h"

//C headers
#include<cstdio>
#include "tbl.h"

namespace Lorene{

class Scalar ;
class Param ;
class Eos ;  
		    //------------------------------------//
		    //		class Hot_eos		  //
		    //------------------------------------//

  /**
   * Base class for temperature-dependent equations of state (abstract class).
   * \ingroup(eos)
   * 
   */
  class Hot_eos {
    
    // Data : 
    // -----
  protected:
    string name ;      ///< EOS name
    
    // Constructors - Destructor
    // -------------------------
  protected:
    Hot_eos() ;			///< Standard constructor
    
    /// Standard constructor from a name (string)
    explicit Hot_eos(const string&) ;
    
    /// Standard constructor from a name (char*)
    explicit Hot_eos(const char*) ;
    
    Hot_eos(const Hot_eos& ) ;		///< Copy constructor
    
    /** Constructor from a binary file (created by the function 
     *  \c sauve(FILE*) ). 
     *  This constructor is protected because any hot EOS construction
     *  from a binary file must be done via the function 
     *  \c Hot_eos::hoteos_from_file(FILE*) . 
     */
    Hot_eos(FILE* ) ;    		
    
    /** Constructor from a formatted file.
     *  This constructor is protected because any hot EOS construction
     *  from a formatted file must be done via the function 
     *  \c Hot_eos::hoteos_from_file(ifstream&) . 
     */
    Hot_eos(ifstream& ) ; 
    
  public:
    virtual ~Hot_eos() ;			///< Destructor
 
    // Derived data : 
    // ------------
  protected:
    mutable Eos* p_cold_eos ;     ///< Corresponding cold Eos.
    
    /// Deletes all the derived quantities
    virtual void del_deriv() const ; 

    /// Sets to \c 0x0 all the pointers on derived quantities
    void set_der_0x0() const ; 
	
    // Name manipulation
    // -----------------
  public:
    /// Returns the hot EOS name
    const string& get_name() const {return name; };
    
    /// Sets the hot EOS name
    void set_name(const char* ) ; 
	
    // Miscellaneous
    // -------------
  public:
    /** Construction of an EOS from a binary file.
     *  The file must have been created by the function \c sauve(FILE*) .
     */
    static Hot_eos* hoteos_from_file(FILE* ) ; 
	
    /** Construction of a hot EOS from a formatted file.
     * 
     *  The fist line of the file must start by the EOS number, according 
     *  to the following conventions:
     *  - 1 = relativistic ideal gas (class \c Ideal_gas ). 
     *  - 2 = non-relativistic ideal gas (class \c Ideal_gas_norel ). 
     *
     *  The second line in the file should contain a name given by the user to the EOS.
     *  The following lines should contain the EOS parameters (one
     *  parameter per line), in the same order than in the class declaration.
     */
    static Hot_eos* hoteos_from_file(ifstream& ) ; 
	
    /// Comparison operator (egality)
    virtual bool operator==(const Hot_eos& ) const = 0 ; 

    /// Comparison operator (difference)
    virtual bool operator!=(const Hot_eos& ) const = 0 ; 
    
    /** Returns a number to identify the sub-classe of \c Hot_eos the
     *  object belongs to. 
     */
    virtual int identify() const = 0 ; 
    
    // Outputs
    // -------
    
  public: 
    virtual void sauve(FILE* ) const ;	///< Save in a file

    /// Display
    friend ostream& operator<<(ostream& , const Hot_eos& ) ;	

  protected: 
    virtual ostream& operator>>(ostream &) const = 0 ;    ///< Operator >>

  public:
    /// Returns the corresponding cold \c Eos.
    virtual const Eos& new_cold_Eos() const = 0 ; 


    // Computational functions
    // -----------------------
  protected:
    /**  General computational method for \c Scalar 's
     *
     *  @param thermo1 [input] first thermodynamical quantity (for instance the
     *	    enthalpy field) from which the thermodynamical quantity \c resu  
     *      is to be computed.
     *  @param thermo2 [input] second thermodynamical quantity (for instance the
     *	    entropy field) from which the thermodynamical quantity \c resu  
     *      is to be computed.
     *  @param nzet  [input] number of domains where \c resu  is to be
     *	    computed.
     *  @param l_min [input] index of the innermost domain is which \c resu 
     *	    is to be computed [default value: 0]; \c resu  is computed only in 
     *      domains whose indices are in \c [l_min,l_min+nzet-1] . In the other
     *	    domains, it is set to zero.
     *  @param fait [input] pointer on the member function of class
     *	    \c Hot_eos which performs the pointwise calculation.
     *  @param resu [output] result of the computation.
     */
    void calcule(const Scalar& thermo1, const Scalar& thermo2, int nzet, int l_min,
		 double (Hot_eos::*fait)(double, double) const, Scalar& resu) const ;

  public:
    /** Computes the baryon density from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} (to be modified) \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return baryon density [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
     *
     */
    virtual double nbar_Hs_p(double ent, double sb) const = 0 ;

    /** Computes the baryon density field from the log-enthalpy field and
     * entropy per baryon.
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *  @param nzet  number of domains where the baryon density is to be
     *	  computed.
     *  @param l_min  index of the innermost domain is which the baryon
     *	density is
     *	to be computed [default value: 0]; the baryon density is
     *	computed only in domains whose indices are in
     *      \c [l_min,l_min+nzet-1] . In the other
     *	domains, it is set to zero.
     *
     *  @return baryon density [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
     *
     */
    Scalar nbar_Hs(const Scalar& ent, const Scalar& sb, int nzet, int l_min = 0) const  ;

    /** Computes the total energy density from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return energy density \e e  [unit: \f$\rho_{\rm nuc} c^2\f$], where
     *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
     */
    virtual double ener_Hs_p(double ent, double sb) const = 0 ;
 
    /** Computes the total energy density from the log-enthalpy and entropy per baryon.
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *  @param nzet  number of domains where the energy density is to be
     *	computed.
     *  @param l_min  index of the innermost domain is which the energy
     *	density is
     *	to be computed [default value: 0]; the energy density is
     *	computed only in domains whose indices are in
     *      \c [l_min,l_min+nzet-1] . In the other
     *	domains, it is set to zero.
     *
     *  @return energy density [unit: \f$\rho_{\rm nuc} c^2\f$], where
     *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
     */
    Scalar ener_Hs(const Scalar& ent, const Scalar& sb, int nzet, int l_min = 0) const ;

    /** Computes the pressure from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return pressure \e p [unit: \f$\rho_{\rm nuc} c^2\f$], where
     *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
     */
    virtual double press_Hs_p(double ent, double sb) const = 0 ;

    /** Computes the pressure from the log-enthalpy and entropy per baryon.
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *  @param nzet  number of domains where the pressure is to be
     *	computed.
     *  @param l_min  index of the innermost domain is which the pressure is
     *	  to be computed [default value: 0]; the pressure is computed
     *    only in domains whose indices are in \c [l_min,l_min+nzet-1] . 
     *    In the other domains, it is set to zero.
     *
     *  @return pressure [unit: \f$\rho_{\rm nuc} c^2\f$], where
     *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
     *
     */
    Scalar press_Hs(const Scalar& ent, const Scalar& sb, int nzet, int l_min = 0) const ;

    /** Computes the temperature from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} (to be modified) \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return temperature [unit: MeV]
     *
     */
    virtual double temp_Hs_p(double ent, double sb) const = 0 ;

    /** Computes the temperature field from the log-enthalpy field and
     * entropy per baryon.
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *  @param nzet  number of domains where the baryon density is to be
     *	  computed.
     *  @param l_min  index of the innermost domain is which the baryon
     *	density is
     *	to be computed [default value: 0]; the baryon density is
     *	computed only in domains whose indices are in
     *      \c [l_min,l_min+nzet-1] . In the other
     *	domains, it is set to zero.
     *
     *  @return temperature [unit: MeV]
     *
     */
    Scalar temp_Hs(const Scalar& ent, const Scalar& sb, int nzet, int l_min = 0) const  ;

  };
  ostream& operator<<(ostream& , const Hot_eos& ) ;	

                    //------------------------------------//
		    //		class Ideal_gas		  //
		    //------------------------------------//

  /**
   * Ideal-gas (temperature-dependent) equation of state, with mass-term 
   * in the energy density. 
   * 
   * \f[
   *    p(n, s_b) = \kappa n^\gamma e^{(\gamma-1)s_b}\ .\qquad (1)
   * \f]
   * and \f[
   *    e(n, s_b) = \frac{\kappa}{\gamma - 1} n^\gamma e^{(\gamma-1)s_b} + m_0\, n\ .
   *    \qquad (2) \f]
   * ### (to be written...)
   *
   *\ingroup (eos) 
   *
   */
  class Ideal_gas : public Hot_eos {
    
    // Data :
    //-------
    
  protected:
    /// Adiabatic index \f$\gamma\f$
    double gam ;
    
    /** Pressure coefficient \f$\kappa\f$  (cf. Eq. (1))
     *  [unit: \f$\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma\f$], where
     *  \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$ and
     *  \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$.
     */
    double kap ; 
    
    /** Individual particule mass \f$m_0\f$  (cf. Eq. (2))
     *  [unit: \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$].
     */
    double m_0 ;
    
    double gam1 ;	    ///< \f$\gamma-1\f$
    double unsgam1 ;    ///< \f$1/(\gamma-1)\f$
    double gam1sgamkap ; ///< \f$(\gamma-1) / (\gamma \kappa) m_0\f$
    
    // Constructors - Destructor
    // -------------------------
  public:
    
    /** Standard constructor.
     *
     *  Unless specified, the individual particle mass \f$m_0\f$ is set 
     *  to the mean baryon mass \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$.
     *
     *  @param gamma  adiabatic index \f$\gamma\f$
     *  @param kappa  pressure coefficient \f$\kappa\f$
     *  @param mass  individual particule mass \f$m_0\f$
     */
    Ideal_gas(double gamma, double kappa, double mass=1.) ;

    Ideal_gas(const Ideal_gas& ) ;	///< Copy constructor
	
    protected:
	/** Constructor from a binary file (created by the function
	 *  \c sauve(FILE*) ).
	 *  This constructor is protected because any hot EOS construction
	 *  from a binary file must be done via the function 
	 *  \c Hot_eos::eos_from_file(FILE*) .
	 */
    Ideal_gas(FILE* ) ;

    /** Constructor from a formatted file.
     *  This constructor is protected because any EOS construction
     *  from a formatted file must be done via the function
     *  \c Hot_eos::hoteos_from_file(ifstream&) . 
     */
    Ideal_gas(ifstream& ) ;

    /// The construction functions from a file
    friend Hot_eos* Hot_eos::hoteos_from_file(FILE* ) ;
    friend Hot_eos* Hot_eos::hoteos_from_file(ifstream& ) ; 

  public:
    virtual ~Ideal_gas() ;			///< Destructor

    // Assignment
    // ----------
    /// Assignment to another \c Ideal_gas 
    void operator=(const Ideal_gas& ) ;

    // Miscellaneous
    // -------------
    
  public :
    /// Comparison operator (egality)
    virtual bool operator==(const Hot_eos& ) const ;
    
    /// Comparison operator (difference)
    virtual bool operator!=(const Hot_eos& ) const ;
    
    /** Returns a number to identify the sub-classe of \c Hot_eos the
     *  object belongs to.
     */
    virtual int identify() const ; 
    
    /// Returns the adiabatic index \f$\gamma\f$ (cf. Eq. (1)).
    double get_gam() const ;

    /// Returns the pressure coefficient \f$\kappa\f$  (cf. Eq. (1)).
    double get_kap() const ;
	
    /** Return the individual particule mass \f$m_0\f$
     *  (cf. Eq. (1))
     */
    double get_m_0() const ;

    virtual const Eos& new_cold_Eos() const ;

    protected:
    /** Computes the auxiliary quantities \c gam1 , \c unsgam1 ,
     *  \c gam1sgamkap  from the values of \c gam  and \c kap 
     */
    void set_auxiliary() ;

    // Outputs
    // -------

  public:
    virtual void sauve(FILE* ) const ;	///< Save in a file

  protected:
    virtual ostream& operator>>(ostream &) const ;    ///< Operator >>


    // Computational functions
    // -----------------------

  public:
    /** Computes the baryon density from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} (to be modified) \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return baryon density [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
     *
     */
    virtual double nbar_Hs_p(double ent, double sb) const ;

    /** Computes the total energy density from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return energy density \e e  [unit: \f$\rho_{\rm nuc} c^2\f$], where
     *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
     */
    virtual double ener_Hs_p(double ent, double sb) const ;
 
    /** Computes the pressure from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return pressure \e p [unit: \f$\rho_{\rm nuc} c^2\f$], where
     *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
     */
    virtual double press_Hs_p(double ent, double sb) const ;

    /** Computes the temperature from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} (to be modified) \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return temperature [unit: MeV]
     *
     */
    virtual double temp_Hs_p(double ent, double sb) const ;

};

                    //------------------------------------//
		    //	      class Hoteos_tabul	  //
		    //------------------------------------//

  /**
   * Hot (temperature-dependent) tabulated equation of state, read from a file. 
   * 
   *
   *\ingroup (eos) 
   *
   */
  class Hoteos_tabul : public Hot_eos {
    
    // Data :
    //-------
    
  protected:
    /// Name of the file containing the tabulated data
    string tablename ;
    
    string authors ; ///<Authors - reference for the table

    /// Lower boundary of the enthalpy interval
    double hmin ;
    	
    /// Upper boundary of the enthalpy interval
    double hmax ;
    
    /// Lower boundary of the entropy interval
    double sbmin ;
    	
    /// Upper boundary of the entropy interval
    double sbmax ;
    
    /// Table of \f$H = \log ( e + P ) / n_B\f$
    Tbl* hhh ;
    
    /// Table of \f$s_B\f$, entropy per baryon (in units of Boltzmann constant).
    Tbl* s_B ;
    
    /// Table of pressure $P$
    Tbl* ppp ;
    
    /// Table of \f$\partial P/\partial H\f$
    Tbl* dpdh ;
    
    /// Table of \f$\partial P/\partial s_B\f$
    Tbl* dpds ;
    
    /// Table of \f$\partial^2 P/\partial s_B \partial H\f$
    Tbl* d2p ;
    
    // Constructors - Destructor
    // -------------------------
  public:
    
    /** Standard constructor from a filename.
     */
    Hoteos_tabul(const string& filename) ;

    Hoteos_tabul(const Hoteos_tabul& ) ;	///< Copy constructor
	
    protected:
    /** Constructor from a binary file (created by the function
     *  \c sauve(FILE*) ).
     *  This constructor is protected because any hot EOS construction
     *  from a binary file must be done via the function 
     *  \c Hot_eos::eos_from_file(FILE*) .
     */
    Hoteos_tabul(FILE* ) ;

    /** Constructor from a formatted file.
     *  This constructor is protected because any EOS construction
     *  from a formatted file must be done via the function
     *  \c Hot_eos::hoteos_from_file(ifstream&) . 
     */
    Hoteos_tabul(ifstream& ) ;

    /// The construction functions from a file
    friend Hot_eos* Hot_eos::hoteos_from_file(FILE* ) ;
    friend Hot_eos* Hot_eos::hoteos_from_file(ifstream& ) ; 

  public:
    virtual ~Hoteos_tabul() ;			///< Destructor

    /// Assignment to another \c Hoteos_tabul 
    void operator=(const Hoteos_tabul& ) ;

    // Miscellaneous
    // -------------

  protected: 	
    /** Reads the file containing the table and initializes
     *  in the arrays \c hhh , \c s_B, \c ppp, ...
     */
    void read_table() ;

    /// Sets all the arrays to the null pointer.
    void set_arrays_0x0() ;
    
  public :
    /// Comparison operator (egality)
    virtual bool operator==(const Hot_eos& ) const ;
    
    /// Comparison operator (difference)
    virtual bool operator!=(const Hot_eos& ) const ;
    
    /** Returns a number to identify the sub-classe of \c Hot_eos the
     *  object belongs to.
     */
    virtual int identify() const ; 
    
    virtual const Eos& new_cold_Eos() const ;

    // Outputs
    // -------

  public:
    virtual void sauve(FILE* ) const ;	///< Save in a file

  protected:
    virtual ostream& operator>>(ostream &) const ;    ///< Operator >>


    // Computational functions
    // -----------------------

  public:
    /** Computes the baryon density from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} (to be modified) \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return baryon density [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
     *
     */
    virtual double nbar_Hs_p(double ent, double sb) const ;

    /** Computes the total energy density from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return energy density \e e  [unit: \f$\rho_{\rm nuc} c^2\f$], where
     *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
     */
    virtual double ener_Hs_p(double ent, double sb) const ;
 
    /** Computes the pressure from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return pressure \e p [unit: \f$\rho_{\rm nuc} c^2\f$], where
     *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
     */
    virtual double press_Hs_p(double ent, double sb) const ;

    /** Computes the temperature from the log-enthalpy and entropy per baryon
     *  (virtual function implemented in the derived classes).
     *
     *  @param ent [input,  unit: \f$c^2\f$] log-enthalpy \e H  defined by
     *    \f$H = c^2 \ln\left( {e+p \over m_B c^2 n} (to be modified) \right) \f$,
     *    where \e e  is the (total) energy density, \e p the pressure,
     *    \e n  the baryon density, and \f$m_B\f$ the baryon mass
     *  @param sb [input,  unit: \f$k_B\f$] entropy per baryon \f$s_b\f$
     *
     *  @return temperature [unit: MeV]
     *
     */
    virtual double temp_Hs_p(double ent, double sb) const ;

};

}
#endif