This file is indexed.

/usr/include/lorene/C++/Include/param_elliptic.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*
 *  Definition of Lorene class Param_elliptic
 *
 */

/*
 *   Copyright (c) 2003 Philippe Grandclement
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef __PARAM_ELLIPTIC_H_ 
#define __PARAM_ELLIPTIC_H_ 

/*
 * $Id: param_elliptic.h,v 1.21 2014/10/13 08:52:36 j_novak Exp $
 * $Log: param_elliptic.h,v $
 * Revision 1.21  2014/10/13 08:52:36  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.20  2007/05/06 10:48:08  p_grandclement
 * Modification of a few operators for the vorton project
 *
 * Revision 1.19  2007/04/24 09:04:11  p_grandclement
 * Addition of an operator for the vortons
 *
 * Revision 1.18  2007/01/16 15:05:59  n_vasset
 * New constructor (taking a Scalar in mono-domain angular grid for
 * boundary) for function sol_elliptic_boundary
 *
 * Revision 1.17  2005/11/30 11:09:03  p_grandclement
 * Changes for the Bin_ns_bh project
 *
 * Revision 1.16  2005/08/26 14:02:38  p_grandclement
 * Modification of the elliptic solver that matches with an oscillatory exterior solution
 * small correction in Poisson tau also...
 *
 * Revision 1.15  2005/06/09 07:56:25  f_limousin
 * Implement a new function sol_elliptic_boundary() and
 * Vector::poisson_boundary(...) which solve the vectorial poisson
 * equation (method 6) with an inner boundary condition.
 *
 * Revision 1.14  2005/02/15 15:43:16  j_novak
 * First version of the block inversion for the vector Poisson equation (method 6).
 *
 * Revision 1.13  2004/12/23 16:30:14  j_novak
 * New files and class for the solution of the rr component of the tensor Poisson
 * equation.
 *
 * Revision 1.12  2004/08/24 09:14:40  p_grandclement
 * Addition of some new operators, like Poisson in 2d... It now requieres the
 * GSL library to work.
 *
 * Also, the way a variable change is stored by a Param_elliptic is changed and
 * no longer uses Change_var but rather 2 Scalars. The codes using that feature
 * will requiere some modification. (It should concern only the ones about monopoles)
 *
 * Revision 1.11  2004/06/22 08:49:57  p_grandclement
 * Addition of everything needed for using the logarithmic mapping
 *
 * Revision 1.10  2004/06/14 15:23:07  j_novak
 * Modif. comments.
 *
 * Revision 1.9  2004/06/14 15:07:10  j_novak
 * New methods for the construction of the elliptic operator appearing in
 * the vector Poisson equation (acting on eta).
 *
 * Revision 1.8  2004/05/14 08:51:00  p_grandclement
 * *** empty log message ***
 *
 * Revision 1.7  2004/05/10 15:28:21  j_novak
 * First version of functions for the solution of the r-component of the
 * vector Poisson equation.
 *
 * Revision 1.6  2004/03/23 14:54:45  j_novak
 * More documentation
 *
 * Revision 1.5  2004/03/17 15:58:47  p_grandclement
 * Slight modification of sol_elliptic_no_zec
 *
 * Revision 1.4  2004/03/05 09:18:48  p_grandclement
 * Addition of operator sec_order_r2
 *
 * Revision 1.3  2004/02/11 09:47:44  p_grandclement
 * Addition of a new elliptic solver, matching with the homogeneous solution
 * at the outer shell and not solving in the external domain (more details
 * coming soon ; check your local Lorene dealer...)
 *
 * Revision 1.2  2004/01/28 16:46:22  p_grandclement
 * Addition of the sol_elliptic_fixe_der_zero stuff
 *
 * Revision 1.1  2003/12/11 14:57:00  p_grandclement
 * I had forgotten the .h (sorry folks...)
 *
 * Revision 1.2  2001/12/11 06:44:41  e_gourgoulhon
 *
 * $Header: /cvsroot/Lorene/C++/Include/param_elliptic.h,v 1.21 2014/10/13 08:52:36 j_novak Exp $
 *
 */

#include "map.h"
#include "ope_elementary.h"
#include "scalar.h"

#define MAP_AFF 0 
#define MAP_LOG 1 

namespace Lorene {
/**
 * This class contains the parameters needed to call the general
 * elliptic solver.
 * 
 * For every domain and every spherical harmonics, it contains the
 * appropriate operator of type \c Ope_elementary and the appropriate
 * variable given by a \c Change_var . \ingroup (ellip)
 *
 * This class is only defined on an affine mapping \c Map_af or 
 * a logarithmic one \c Map_log
 * 
 **/
class Param_elliptic {

 protected:
  int type_map ; ///< Type of mapping either MAP_AFF or MAP_LOG
  const Map_af* mp_af ; ///< The mapping, if affine.
  const Map_log* mp_log ; ///< The mapping if log type.
 
  Ope_elementary** operateurs ; ///< Array on the elementary operators.
  
  Scalar var_F ; ///< Additive variable change function.
  Scalar var_G ; ///< Multiplicative variable change that must be sphericaly symetric !

  mutable Itbl done_F ; ///< Stores what has been computed for \c F
  mutable Itbl done_G ; ///< Stores what has been computed for \c G
  mutable Tbl val_F_plus ; ///< Values of F at the outer boundaries of the various domains.
  mutable Tbl val_F_minus ; ///< Values of F at the inner boundaries of the various domains.
  mutable Tbl val_dF_plus ; ///< Values of the derivative of F at the outer boundaries of the various domains.
  mutable Tbl val_dF_minus ; ///< Values of the derivative of F at the inner boundaries of the various domains.
  mutable Tbl val_G_plus ; ///< Values of G at the outer boundaries of the various domains.
  mutable Tbl val_G_minus ; ///< Values of G at the inner boundaries of the various domains.
  mutable Tbl val_dG_plus ; ///< Values of the derivative of G at the outer boundaries of the various domains.
  mutable Tbl val_dG_minus ; ///< Values of the derivative of G at the inner boundaries of the various domains.

 private:
  void compute_val_F(int, int, int) const ; ///< Computes the various values of \c F
  void compute_val_G(int) const ; ///< Computes the various values of \c G

 public:
  /**
   * Standard constructor from a \c Scalar 
   * @param so [parameter] type
   * of the source of the elliptic equation. The actual values are not
   * used but \c *this will be constructed using the same number of
   * points, domains and symetry than \c so .
   * 
   * This constructor initializes everything to solve a Poisson
   * equation with non variable changes from domains to another.
   **/
  Param_elliptic (const Scalar&) ;
  ~Param_elliptic() ; ///< Destructor.
  
  /// Returns the mapping.
  const Map_radial& get_mp() const ;
  double get_alpha (int) const ;
  double get_beta (int) const ;
  int get_type (int) const ;

 public:  
  /**
   * Set the operator to \f$\left(\Delta - m^2\right)\f$ in one domain
   * (not in the nucleus).
   *
   * @param zone [input] : the domain.
   * @param mas [input] : the masse \f$m\f$.
   * @param so [input] : the source (used only to get the right basis).
   **/
  void set_helmholtz_minus (int zone, double mas, Scalar& so) ;
  /**
   * Set the operator to \f$\left(\Delta - 2 \partial_r / r\right)\f$ 
   * everywhere but in the compactified domain.
   *
   * @param so [input] : the source (used only to get the right basis).
   **/
  void set_poisson_pseudo_1d (Scalar& so) ;
  /**
   * Set the operator to \f$\left(\Delta - 2 \partial_r / r - m^2\right)\f$ in one domain
   *
   * @param zone [input] : the domain.
   * @param mas [input] : the masse \f$m\f$.
   * @param so [input] : the source (used only to get the right basis).
   **/
  void set_helmholtz_minus_pseudo_1d (int zone, double mas, Scalar& so) ;

   /**
    * Set the operator to \f$\left(\Delta + m^2\right)\f$ in one
    * domain (only in the shells).
    *
    * @param zone [input] : the domain.
    * @param mas [input] : the masse \f$m\f$.
    * @param so [input] : the source (used only to get the right basis).
    **/
  void set_helmholtz_plus (int zone, double mas, Scalar& so) ; 
 
  /**
   * Set everything to do a 2d-Poisson, with or without l=0 (not put by default...)
   **/
  void set_poisson_2d (const Scalar &, bool indic = false) ;  
  
  /**
   * Set the 2D Helmholtz operator (with minus sign)
   *
   *  @param zone [input] : the domain.
   * @param mas [input] : the masse parameter.
   **/
  void set_helmholtz_minus_2d (int zone, double mas, const Scalar&) ; 

  /**
    * Set the operator to \f$a r^2 \partial^2/\partial r^2 + 
    * b r \partial /\partial r + c\f$ in one domain (only in the shells).
    *
    * @param zone [input] : the domain.
    * @param a [input] : the parameter \f$a\f$.
    * @param b [input] : the parameter \f$b\f$.
    * @param c [input] : the parameter \f$c\f$.
    **/
  void set_sec_order_r2 (int zone, double a, double b, double c) ;
  
  /**
    * Set the operator to \f$a \partial^2/\partial r^2 + 
    * b \partial /\partial r + c\f$ in one domain (only in the shells).
    *
    * @param zone [input] : the domain.
    * @param a [input] : the parameter \f$a\f$.
    * @param b [input] : the parameter \f$b\f$.
    * @param c [input] : the parameter \f$c\f$.
    **/
  void set_sec_order (int zone, double a, double b, double c) ;
   
   /**
    * Set the operator to \f$\Delta - 2\partial /\partial r\f$ in one domain (not implemented in the nucleus).
    *
    * @param zone [input] : the domain.
    * @param so [input] : the source (used only to get the right basis).
    **/
  void set_ope_vorton (int zone, Scalar& so) ;
   /**
    * Sets the operator to \f$\Delta + \frac{2}{r} \frac{\partial}{\partial r} 
    * + \frac{2 - l(l+1)}{r^2} \f$ in all domains, for \f$ l \not= 0 \f$; 
    * and to \f$\frac{\partial^2}{\partial r^2} + \frac{2}{r} 
    * \frac{\partial}{\partial r} - \frac{2}{r^2} \f$ in all domains otherwise.
    *
    * @param zone [input] : the domain.
    * @param only_l_zero [input] : the operator in built only for l=0 
    **/
  void set_poisson_vect_r(int zone, bool only_l_zero = false) ; 

   /**
    * Sets the operator to be a regular elliptic operator to solve for the
    * \f$\eta \f$ component of the vector Poisson equation. The operator is
    * \f$\frac{\partial^2}{\partial r^2} + 
    * \frac{2}{r} \frac{\partial}{\partial r} - \frac{l(l-1)}{r^2} \f$ 
    * (Poisson with the decrease of \e l by one unit)
    * in all domains but the CED, for \f$ l \not= 0 \f$; it is not defined 
    * for \e l = 0. In the CED, the operator is also the Laplace one, but 
    * with \e l increased by one unit: \f$\frac{\partial^2}{\partial r^2} + 
    * \frac{2}{r} \frac{\partial}{\partial r} - \frac{(l+1)(l+2)}{r^2} \f$. 
    * This is intended to solve the equation for \f$ \eta \f$ arising in 
    * the decomposition of the vector Poisson equation.
    *
    * @param zone [input] : the domain.
    **/
  void set_poisson_vect_eta(int zone) ; 

   /**
    * Sets the operator to \f$\Delta + \frac{4}{r} \frac{\partial}{\partial r} 
    * + \frac{6 - l(l+1)}{r^2} \f$ in all domains, for \f$l \geq 2\f$ only. 
    *
    * @param zone [input] : the domain.
    **/
  void set_poisson_tens_rr(int zone) ; 

  /**
   * Increases the quantum number \e l in the domain \c zone .
   **/
  void inc_l_quant (int zone) ;
  
  /**
   * Changes the variable function F
   **/
  void set_variable_F (const Scalar&) ;

  /**
   * Changes the variable function G
   **/
  void set_variable_G (const Scalar&) ;

  /**
   * Returns the value of F, for a given angular point, at the outer boundary of 
   * the domain \c zone ;
   **/
  double F_plus (int zone, int k, int j) const ;

   /**
   * Returns the value of F, for a given angular point, at the inner boundary of 
   * the domain \c zone ;
   **/
  double F_minus (int zone, int k, int j) const ;

  /**
   * Returns the value of the radial derivative of F, 
   * for a given angular point, at the outer boundary of 
   * the domain \c zone ;
   **/
  double dF_plus (int zone, int k, int j) const ;
 
  /**
   * Returns the value of the radial derivative of F, 
   * for a given angular point, at the inner boundary of 
   * the domain \c zone ;
   **/
  double dF_minus (int zone, int k, int j) const ;

  /**
   * Returns the value of G, for a given angular point, at the outer boundary of 
   * the domain \c zone ;
   **/
  double G_plus (int zone) const ;

   /**
   * Returns the value of G, for a given angular point, at the inner boundary of 
   * the domain \c zone ;
   **/
  double G_minus (int zone) const ;

  /**
   * Returns the value of the radial derivative of G, 
   * for a given angular point, at the outer boundary of 
   * the domain \c zone ;
   **/
  double dG_plus (int zone) const ;
 
  /**
   * Returns the value of the radial derivative of G, 
   * for a given angular point, at the inner boundary of 
   * the domain \c zone ;
   **/
  double dG_minus (int zone) const ;

  // A lot of friend functions... Possiblement pas toutes utiles...
  friend Mtbl_cf elliptic_solver  (const Param_elliptic&, const Mtbl_cf&) ;
  friend Mtbl_cf elliptic_solver_boundary (const Param_elliptic&, const Mtbl_cf&, const Mtbl_cf& bound, double fact_dir, double fact_neu   ) ;
  friend Mtbl_cf elliptic_solver_no_zec  
    (const Param_elliptic&, const Mtbl_cf&, double) ;
  friend Mtbl_cf elliptic_solver_only_zec  
    (const Param_elliptic&, const Mtbl_cf&, double) ;
  friend Mtbl_cf elliptic_solver_sin_zec  
    (const Param_elliptic&, const Mtbl_cf&, double*, double*) ;
  friend Mtbl_cf elliptic_solver_fixe_der_zero  
    (double, const Param_elliptic&, const Mtbl_cf&) ;

  friend void Map_af::sol_elliptic(Param_elliptic&, const Scalar&, Scalar&) const ;
  friend void Map_af::sol_elliptic_boundary(Param_elliptic&, const Scalar&, Scalar&, const Mtbl_cf& , 
					    double , double ) const ;
  friend void Map_af::sol_elliptic_boundary(Param_elliptic&, const Scalar&, Scalar&, const Scalar& , 
					    double , double ) const ;


  friend void Map_af::sol_elliptic_no_zec(Param_elliptic&, const Scalar&, Scalar&, double) const ;
  friend void Map_af::sol_elliptic_only_zec(Param_elliptic&, const Scalar&, Scalar&, double) const ;
  friend void Map_af::sol_elliptic_sin_zec(Param_elliptic&, const Scalar&, Scalar&, double*, double*) const ;
  friend void Map_af::sol_elliptic_fixe_der_zero(double, Param_elliptic&, const Scalar&, Scalar&) const ;

  friend void Map_af::sol_elliptic_2d(Param_elliptic&, const Scalar&, Scalar&) const ;
  friend void Map_af::sol_elliptic_pseudo_1d(Param_elliptic&, const Scalar&, Scalar&) const ;

  friend void Map_log::sol_elliptic(Param_elliptic&, const Scalar&, Scalar&) const ;
  friend void Map_log::sol_elliptic_boundary(Param_elliptic&, const Scalar&, Scalar&, const Mtbl_cf&, 
					     double, double) const ;
 
 friend void Map_log::sol_elliptic_boundary(Param_elliptic&, const Scalar&, Scalar&, const Scalar&, 
					     double, double) const ;


  friend void Map_log::sol_elliptic_no_zec(Param_elliptic&, const Scalar&, Scalar&, double) const ;
} ;

}
#endif