This file is indexed.

/usr/include/lorene/C++/Include/star.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
/*
 *  Definition of Lorene classes Star, Star_bin and Star_bin_xcts
 *				 
 */

/*
 *   Copyright (c) 2010 Michal Bejger
 *   Copyright (c) 2004 Francois Limousin
 *
 *   Copyright (c) 2000-2001 Eric Gourgoulhon (for preceding class Etoile)
 *   Copyright (c) 2000-2001 Keisuke Taniguchi (for preceding class Etoile)
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


#ifndef __STAR_H_ 
#define __STAR_H_ 

/*
 * $Id: star.h,v 1.32 2014/10/13 08:52:36 j_novak Exp $
 * $Log: star.h,v $
 * Revision 1.32  2014/10/13 08:52:36  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.31  2010/12/09 10:36:42  m_bejger
 * Decouple method removed from declaration in Star_bin_xcts
 *
 * Revision 1.30  2010/10/26 18:47:36  m_bejger
 * Modification of Star_bin_xcts::equilibrium, added table fact_resize
 *
 * Revision 1.29  2010/10/18 19:11:53  m_bejger
 * Changes to Star::equilibrium_spher and Star_bin_xcts::equilibrium to allow for calculations with more than one domain in the star
 *
 * Revision 1.28  2010/06/15 08:17:43  m_bejger
 * Method Star_bin_xcts::set_chi_comp() declared
 *
 * Revision 1.27  2010/05/04 07:53:32  m_bejger
 * Class Star_bin_xcts added (initial version)
 *
 * Revision 1.26  2010/03/29 12:00:25  e_gourgoulhon
 * Removed lnq from documentation
 * (lnq has to be removed from base class Star; it is meaningfull only
 * for Star_bin).
 *
 * Revision 1.25  2010/01/24 16:07:45  e_gourgoulhon
 * New class Star_rot.
 *
 * Revision 1.24  2007/11/06 16:22:03  j_novak
 * The data member stress_euler is now a Sym_tensor instead of a Tensor.
 *
 * Revision 1.23  2007/06/21 19:48:25  k_taniguchi
 * Introduction of a method to compute ray_eq_3pis2.
 *
 * Revision 1.22  2006/05/31 09:25:47  f_limousin
 * Modif. of the size of the different domains
 *
 * Revision 1.21  2006/04/11 14:26:12  f_limousin
 * New version of the code : improvement of the computation of some
 * critical sources, estimation of the dirac gauge, helical symmetry...
 *
 * Revision 1.20  2005/09/15 15:56:28  e_gourgoulhon
 * Made the documentation compliant with Doxygen.
 *
 * Revision 1.19  2005/09/13 19:38:32  f_limousin
 * Reintroduction of the resolution of the equations in cartesian coordinates.
 *
 * Revision 1.18  2005/08/13 16:14:11  m_saijo
 * Corrected the document of the total shift vector
 *
 * Revision 1.17  2005/04/08 12:36:45  f_limousin
 * Just to avoid warnings...
 *
 * Revision 1.16  2005/02/24 16:09:29  f_limousin
 * Change the name of some variables (for instance dcov_logn --> dlogn).
 * Add also member dlnq but delete dlnpsi_auto and dlogn_auto.
 *
 * Revision 1.15  2005/02/17 17:28:18  f_limousin
 * Change the name of some quantities to be consistent with other classes
 * (for instance nnn is changed to nn, shift to beta, beta to lnq...)
 *
 * Revision 1.14  2005/02/11 18:11:16  f_limousin
 * Introduction of a member Map_af in derived class Star_bin.
 *
 * Revision 1.13  2004/11/11 16:29:48  j_novak
 * set_der_0x0 is no longer virtual (to be coherent with Tensor/Scalar classes).
 *
 * Revision 1.12  2004/11/10 16:31:53  j_novak
 * Star is no longer an abstract class (mass_b and mass_g are no longer
 * pure virtual). Modified comments to be readable by doxygen.
 *
 * Revision 1.11  2004/07/21 11:48:30  f_limousin
 * Remove function sprod.
 *
 * Revision 1.10  2004/06/22 12:47:01  f_limousin
 * Change qq, qq_auto and qq_comp to beta, beta_auto and beta_comp.
 *
 * Revision 1.9  2004/05/25 14:48:57  f_limousin
 * Add a parameter for the function equilibrium.
 *
 * Revision 1.8  2004/03/23 09:53:50  f_limousin
 * Minor changes
 *
 * Revision 1.7  2004/02/27 09:41:52  f_limousin
 * Scalars ssjm1_logn, ssjm1_qq ... for all metric coefficients have been
 * in class Star_bin for the resolution of Poisson equations.
 * The class Star is now abstract : the computational routines mass_b()
 * and mass_g() = 0.
 *
 * Revision 1.6  2004/01/22 10:06:33  f_limousin
 * Add methods set_logn_comp() and set_shift_auto().
 *
 * Revision 1.5  2004/01/20 15:26:00  f_limousin
 * New class star and star_bin.
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/star.h,v 1.32 2014/10/13 08:52:36 j_novak Exp $
 *
 */

// Headers Lorene
#include "tensor.h"
#include "metric.h"

namespace Lorene {
class Eos ;

			//---------------------------//
			//    base class Star        //
			//---------------------------//

/**
 * Base class for stars. \ingroup (star)
 * 
 * A \c Star is constructed upon (i) a mapping 
 * (derived class of \c Map), the center of which defines the center of the 
 * star, and (ii) an equation of state (derived class of \c Eos).  
 * It contains tensor fields (class \c Tensor) which describe the
 * hydrodynamical quantities as well as the gravitational field (spacetime
 * metric). 
 * 
 * According to the 3+1 formalism, the spacetime metric is written
 * \f[
 *   ds^2 = - N^2  dt^2 + \gamma_{ij} ( dx^i + \beta^i dt )
 *               (dx^j + \beta^j dt )
 * \f]
 * where \f$\gamma_{ij}\f$ is the 3-metric, described by a Lorene object of class \c Metric. 
 * 
 * The 3+1 formalism introduces two kinds of privileged observers: the
 * fluid comoving observer and the Eulerian observer, whose 4-velocity
 * is the unit future directed normal to the \e t = const hypersurfaces. 
 * The hydrodynamical quantities measured by the fluid observer correspond
 * to the members \c ent, \c nbar, \c ener, and \c press. 
 * The hydrodynamical quantities measured by the Eulerian observer correspond
 * to the members \c ener_euler,  \c s_euler, \c gam_euler, and 
 * \c u_euler.  
 * 
 * \version $Id: star.h,v 1.32 2014/10/13 08:52:36 j_novak Exp $
 */
class Star {

    // Data : 
    // -----
    protected:
	Map& mp ;	    ///< Mapping associated with the star

	/// Number of domains of \c *mp occupied by the star
	int nzet ;
	
	const Eos& eos ;   ///< Equation of state of the stellar matter
    
	// Fluid quantities with respect to the fluid frame
	// ------------------------------------------------

	Scalar ent ;	   ///< Log-enthalpy 
 	
	Scalar nbar ; 	   ///< Baryon density in the fluid frame
	Scalar ener ;	   ///< Total energy density in the fluid frame
	Scalar press ;	   ///< Fluid pressure

	// Fluid quantities with respect to the Eulerian frame
	// ---------------------------------------------------
	Scalar ener_euler ; ///< Total energy density in the Eulerian frame

	/// Trace of the stress scalar in the Eulerian frame
	Scalar s_euler ;   

	/// Lorentz factor between the fluid and Eulerian observers 
	Scalar gam_euler ; 
	
	/// Fluid 3-velocity with respect to the Eulerian observer
	Vector u_euler ; 
 
	/** Spatial part of the stress-energy tensor with respect
	 * to the Eulerian observer. 
	 */
	Sym_tensor stress_euler ;
	
	// Metric potentials
	// -----------------
	
	/** Logarithm of the lapse \e N .
	 *   In the Newtonian case, 
	 *   this is the Newtonian gravitational potential
	 *   (in units of \f$c^2\f$). 
	 */
	Scalar logn ;

	/// Lapse function \e N .
	Scalar nn ; 
	
	/// Shift vector.
	Vector beta ;
	
	// Scalar field \f$\ln Q = \ln(\psi^2  N)\f$ 
	//## to be removed from base class Star
	Scalar lnq ;
	
	/// 3-metric 
	Metric gamma ;


    // Derived data : 
    // ------------
    protected:
	/// Coordinate radius at \f$\phi=0\f$, \f$\theta=\pi/2\f$. 
	mutable double* p_ray_eq ; 

	/// Coordinate radius at \f$\phi=\pi/2\f$, \f$\theta=\pi/2\f$. 
	mutable double* p_ray_eq_pis2 ;

	/// Coordinate radius at \f$\phi=\pi\f$, \f$\theta=\pi/2\f$. 
	mutable double* p_ray_eq_pi ;
	
	/// Coordinate radius at \f$\phi=3\pi/2\f$, \f$\theta=\pi/2\f$. 
	mutable double* p_ray_eq_3pis2 ;

	/// Coordinate radius at \f$\theta=0\f$. 
	mutable double* p_ray_pole ;
	
	/** Description of the stellar surface: 2-D \c Itbl containing the 
	 *	values of the domain index \e l on the surface at the 
	 *	collocation points in \f$(\theta', \phi')\f$
	 */
	mutable Itbl* p_l_surf ; 
	
	/** Description of the stellar surface: 2-D \c Tbl containing the 
	 *	values of the radial coordinate \f$\xi\f$ on the surface at the 
	 *	collocation points in \f$(\theta', \phi')\f$
	 */
	mutable Tbl* p_xi_surf ; 
	
	mutable double* p_mass_b ;	///< Baryon mass
	mutable double* p_mass_g ;	///< Gravitational mass


    // Constructors - Destructor
    // -------------------------
    public:
    
	/** Standard constructor. 
	 * 
	 * @param mp_i Mapping on which the star will be defined
	 * @param nzet_i Number of domains occupied by the star
	 * @param eos_i Equation of state of the stellar matter
	 * 
	 */
	Star(Map& mp_i, int nzet_i, const Eos& eos_i) ;			
	
	
	Star(const Star& ) ;		///< Copy constructor

	/** Constructor from a file (see \c sauve(FILE* )). 
	 * 
	 * @param mp_i Mapping on which the star will be defined
	 * @param eos_i Equation of state of the stellar matter
	 * @param fich	input file (must have been created by the function
	 *	\c sauve)
	 */
	Star(Map& mp_i, const Eos& eos_i, FILE* fich) ;    		

	virtual ~Star() ;			///< Destructor

	
    // Memory management
    // -----------------
    protected:
	/// Deletes all the derived quantities
	virtual void del_deriv() const ; 
	
	/// Sets to \c 0x0 all the pointers on derived quantities
	virtual void set_der_0x0() const ; 

	/** Sets to \c ETATNONDEF (undefined state) the hydrodynamical 
	 *  quantities relative to the Eulerian observer.
	 */
	virtual void del_hydro_euler() ; 
	

    // Mutators / assignment
    // ---------------------
    public:
	/// Assignment to another \c Star
	void operator=(const Star&) ;	
	
	/// Read/write of the mapping
	Map& set_mp() {return mp; } ; 

	/// Assignment of the enthalpy field.
	void set_enthalpy(const Scalar& ) ; 
	
	/** Computes the proper baryon and energy density, as well as
	 *  pressure from the enthalpy.
	 */
	void equation_of_state() ; 
	
	/** Computes the hydrodynamical quantities relative to the Eulerian
	 *  observer from those in the fluid frame (\c nbar, \c ener
	 *  and \c press).
	 */
	 virtual void hydro_euler() ; 
	
	/** Computes a spherical static configuration. 
	 * 
	 *  @param ent_c [input] central value of the enthalpy
	 *  @param precis [input] threshold in the relative difference between 
	 *	the enthalpy fields of two consecutive steps
	 *	to stop the iterative procedure (default value: 1.e-14)
     *  @param ent_limit [input] : array of enthalpy values to be set 
     *  at the boundaries between the domains; if set to 0x0 (default), 
     *  the initial values will be kept.
	 */
	 virtual void equilibrium_spher(double ent_c, double precis = 1.e-14, 
	 		 const Tbl* pent_limit = 0x0 ) ; 

    // Accessors
    // ---------
    public:
	/// Returns the mapping
	const Map& get_mp() const {return mp; } ; 

	/// Returns the number of domains occupied by the star
	int get_nzet() const {return nzet; } ; 

	/// Returns the equation of state
	const Eos& get_eos() const {return eos; } ; 

	/// Returns the enthalpy field 
	const Scalar& get_ent() const {return ent;} ;

	/// Returns the proper baryon density
	const Scalar& get_nbar() const {return nbar;} ;

	/// Returns the proper total energy density
	const Scalar& get_ener() const {return ener;} ;

	/// Returns the fluid pressure
	const Scalar& get_press() const {return press;} ;

	/// Returns the total energy density with respect to the Eulerian observer
	const Scalar& get_ener_euler() const {return ener_euler;} ;

	/// Returns the trace of the stress tensor in the Eulerian frame
	const Scalar& get_s_euler() const {return s_euler;} ;

	/// Returns the Lorentz factor between the fluid and Eulerian observers
	const Scalar& get_gam_euler() const {return gam_euler;} ;

	/// Returns the fluid 3-velocity with respect to the Eulerian observer
	const Vector& get_u_euler() const {return u_euler;} ;

	 /** Returns the spatial part of the stress-energy tensor 
	  *  with respect to the Eulerian observer
	  */
	const Tensor& get_stress_euler() const {return stress_euler;} ;

	/** Returns the logarithm of the lapse \e N.
	 *   In the Newtonian case, this is the Newtonian
	 *   gravitational potential (in units of \f$c^2\f$). 
	 */
	const Scalar& get_logn() const {return logn;} ;

	/// Returns the lapse function \e N
	const Scalar& get_nn() const {return nn;} ;

	/// Returns the shift vector \f$\beta^i\f$.
	const Vector& get_beta() const {return beta;} ;

	// Returns the scalar field \f$\ln Q\f$.
	//## to be removed from base class Star
	const Scalar& get_lnq() const {return lnq;} ;

	/// Returns the 3-metric \f$\gamma\f$.
	const Metric& get_gamma() const {return gamma;} ;

    // Outputs
    // -------
    public:
	virtual void sauve(FILE* ) const ;	    ///< Save in a file
    
	/// Display
	friend ostream& operator<<(ostream& , const Star& ) ;	

    protected:
	/// Operator >> (virtual function called by the operator <<). 
	virtual ostream& operator>>(ostream& ) const ;    

    // Global quantities
    // -----------------
    public:
	/// Coordinate radius at \f$\phi=0\f$, \f$\theta=\pi/2\f$ [r_unit].
	double ray_eq() const ; 
	
	/// Coordinate radius at \f$\phi=\pi/2\f$, \f$\theta=\pi/2\f$ [r_unit].
	double ray_eq_pis2() const ; 
	
	/// Coordinate radius at \f$\phi=\pi\f$, \f$\theta=\pi/2\f$ [r_unit].
	double ray_eq_pi() const ; 
	
	/// Coordinate radius at \f$\phi=3\pi/2\f$, \f$\theta=\pi/2\f$ [r_unit].
	double ray_eq_3pis2() const ;

	/// Coordinate radius at \f$\theta=0\f$ [r_unit]. 
	double ray_pole() const ; 
    
	/** Description of the stellar surface: returns a 2-D \c Itbl 
	 *	containing the 
	 *	values of the domain index \e l on the surface at the 
	 *	collocation points in \f$(\theta', \phi')\f$.
	 *	The stellar surface is defined as the location where
	 *	the enthalpy (member \c ent) vanishes.
	 */
	virtual const Itbl& l_surf() const ; 
	
	/** Description of the stellar surface: returns a 2-D \c Tbl 
	 *	containing the values of the radial coordinate \f$\xi\f$ 
	 *	on the surface at the 
	 *	collocation points in \f$(\theta', \phi')\f$. 
	 *	The stellar surface is defined as the location where
	 *	the enthalpy (member \c ent) vanishes.
	 */
	const Tbl& xi_surf() const ; 

	/// Baryon mass
    	virtual double mass_b() const = 0  ;
	
	/// Gravitational mass
    	virtual double mass_g() const = 0  ;
	
};
ostream& operator<<(ostream& , const Star& ) ;	


			//---------------------------//
			//    class Star_bin         //
			//---------------------------//

/**
 * Class for stars in binary system. *** UNDER DEEVELOPMENT *** \ingroup (star)
 *
 * A \c Star_bin can be construted in two states, represented by
 * the \c bool member \c irrotational: (i) irrotational
 * (i.e. the fluid motion is irrotational) or (ii) rigidly corotating 
 * with respect to the orbital motion (synchronized binary). 
 *
 * @version #$Id: star.h,v 1.32 2014/10/13 08:52:36 j_novak Exp $#
 */
class Star_bin : public Star {

    // Data : 
    // -----
    protected:
	/** \c true for an irrotational star, \c false for a
	 *  corotating one
	 */
	bool irrotational ; 
	
	/** Scalar potential \f$\Psi_0\f$ of the non-translational part of
	 *  fluid 4-velocity (in the irrotational case)
	 */
	Scalar psi0 ; 

	/** Gradient of \f$\Psi\f$ (in the irrotational case)
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Vector d_psi ; 
	
	/** Spatial projection of the fluid 3-velocity with respect to  
	 *  the co-orbiting observer. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Vector wit_w ; 
	
	/** Logarithm of the Lorentz factor between the fluid and 
	 *  the co-orbiting observer.
	 */
	Scalar loggam ; 

	/** 3-vector shift, divided by \e N, of the rotating coordinates,
	 *  \f$\beta^i/N\f$. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Vector bsn ; 
	
	/// Centrifugal potential
	Scalar pot_centri ; 	


	/** Part of the lapse logarithm (gravitational potential at the
	 *  Newtonian limit) generated principally by the star. 
	 */
	Scalar logn_auto ; 

	/** Part of the lapse logarithm (gravitational potential at the
	 *  Newtonian limit) generated principally by the companion star. 
	 */
	Scalar logn_comp ; 

	/// Covariant derivative of the total logarithm of the lapse. 
	Vector dcov_logn ;

	/// Contravariant derivative of the total logarithm of the lapse. 
	Vector dcon_logn ;
	
	/** Scalar field \f$ Q = \psi^2 N \f$ generated principally by the
	 *  star.
	 */
	Scalar lnq_auto ;

	/** Scalar field \f$ Q = \psi^2 N \f$ generated principally by the
	 *  companion star.
	 */
	Scalar lnq_comp ;

	
	/// Conformal factor \f$\psi^4\f$
	Scalar psi4 ;

	/// Covariant derivative of the logarithm of the conformal factor
	Vector dcov_phi ;
	/// Contravariant derivative of the logarithm of the conformal factor
	Vector dcon_phi ;

	/** Flat metric defined on the mapping (Spherical components 
	 * with respect to the mapping of the star) .
	 */
	Metric_flat flat ;

	/// Conformal metric \f$\tilde \gamma_{ij}\f$
	Metric gtilde ;

	/** Part of the shift vector generated principally by the star
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Vector beta_auto ; 

	/** Part of the shift vector generated principally by the star
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Vector beta_comp ; 


	/** Total deviation of the inverse conformal metric 
	 *  \f$\tilde \gamma^{ij}\f$ from the inverse flat metric. 
	 */
	Sym_tensor hij ; 


	/** Deviation of the inverse conformal metric 
	 *  \f$\tilde \gamma^{ij}\f$ from the inverse flat metric generated
	 *  principally by the star. 
	 */
	Sym_tensor hij_auto ;

	/** Deviation of the inverse conformal metric 
	 *  \f$\tilde \gamma^{ij}\f$ from the inverse flat metric generated
	 *  principally by the companion star. 
	 */
	Sym_tensor hij_comp ;

	/** Part of the extrinsic curvature tensor \f$\tilde K^{ij}\f$
	 *  generated by \c beta_auto. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Sym_tensor tkij_auto ;
	
	/** Part of the extrinsic curvature tensor \f$\tilde K^{ij}\f$
	 *  generated by \c beta_comp. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Sym_tensor tkij_comp ;
	
	/** Part of the scalar \f$K_{ij} K^{ij}\f$
	 *  generated by \c beta_auto, i.e. 
	 *    \f$K_{ij}^{\rm auto} K^{ij}_{\rm auto}\f$ 
	 */
	Scalar kcar_auto ;
	
	/** Part of the scalar \f$K_{ij} K^{ij}\f$
	 *  generated by \c beta_auto and \c beta_comp, i.e. 
	 *    \f$K_{ij}^{\rm auto} K^{ij}_{\rm comp}\f$ 
	 */
	Scalar kcar_comp ;

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c logn_auto.
	 */
	Scalar ssjm1_logn ;

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c lnq_auto.
	 */
	Scalar ssjm1_lnq ;

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c khi. (second scalar equation 
	 *  for the resolution of the vectorial poisson equation for the shift)
	 */
	Scalar ssjm1_khi ;

	Vector ssjm1_wbeta ;
	
	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c h00_auto.
	 */
	Scalar ssjm1_h11 ;

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c h10_auto.
	 */
	Scalar ssjm1_h21 ;

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c h20_auto.
	 */
	Scalar ssjm1_h31 ;

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c h11_auto.
	 */
	Scalar ssjm1_h22 ;

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c h21_auto.
	 */
	Scalar ssjm1_h32 ;

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c h22_auto.
	 */
	Scalar ssjm1_h33 ;

	/**
	  * Function used to construct the part \f$lnq_auto\f$ generated by 
	  * the star  from the total \f$lnq\f$.
	  * Mainly this \c Scalar is 1 around the star and 0 around 
	  * the companion
	  * and the sum of \c decouple for the star and his companion is 1 
	  * everywhere.
	  */
	 Scalar decouple ;

	 /** \c true  if the 3-metric is conformally flat, \c false
	  *  for a more general metric. 
	  */
	 bool conf_flat ;
	
    // Derived data : 
    // ------------
    protected:
	/// Absolute coordinate X of the barycenter of the baryon density
	mutable double* p_xa_barycenter ; 
	 

    // Constructors - Destructor
    // -------------------------
    public:
	/** Standard constructor. 
	 * 
	 * @param mp_i Mapping on which the star will be defined
	 * @param nzet_i Number of domains occupied by the star
	 * @param eos_i Equation of state of the stellar matter
	 * @param irrot should be \c true for an irrotational star, 
	 *		    \c false for a corotating one
	 * @param conf_flat should be \c true for a conformally flat metric
	 *                  \c false for a general one
	 */
	Star_bin(Map& mp_i, int nzet_i,  const Eos& eos_i,
		   bool irrot, bool conf_flat) ;			
	
	
	Star_bin(const Star_bin& ) ;		///< Copy constructor

	/** Constructor from a file (see \c sauve(FILE* )). 
	 * 
	 * @param mp_i Mapping on which the star will be defined
	 * @param eos_i Equation of state of the stellar matter
	 * @param fich	input file (must have been created by the function
	 *	\c sauve)
	 */
	Star_bin(Map& mp_i, const Eos& eos_i, FILE* fich) ;
    		
	virtual ~Star_bin() ;			///< Destructor


    // Memory management
    // -----------------
    protected:
	/// Deletes all the derived quantities
	virtual void del_deriv() const ; 
	
	/// Sets to \c 0x0 all the pointers on derived quantities
	virtual void set_der_0x0() const ; 

	/** Sets to \c ETATNONDEF (undefined state) the hydrodynamical 
	 *  quantities relative to the Eulerian observer.
	 */
	virtual void del_hydro_euler() ; 
	

    // Mutators / assignment
    // ---------------------
    public:
	/// Assignment to another \c Star_bin
	void operator=(const Star_bin& ) ;	
	
	/// Read/write the centrifugal potential
	Scalar& set_pot_centri() ;
	
    /** Read/write of the logarithm of the lapse generated 
	 *  principally by the companion.
	 */ 
	Scalar& set_logn_comp() ;

	/// Assignment of a new logn_auto
	void set_logn_auto(const Scalar& logn_auto_new) {logn_auto = logn_auto_new ;
	return ;}

	/// Assignment of a new lnq_auto
	void set_lnq_auto(const Scalar& lnq_auto_new) {lnq_auto = lnq_auto_new ;
	return ;}

	/// Read/write of \f$beta_auto\f$
	Vector& set_beta_auto() ;	

	/// Read/write of \f$beta\f$
	Vector& set_beta() ;	
	
	/// Write if conformally flat 
	void set_conf_flat(bool confflat) {conf_flat = confflat ; return ;}

    // Accessors
    // ---------
    public:
	/** Returns \c true for an irrotational motion, \c false for 
	 *  a corotating one. 
	 */
	bool is_irrotational() const {return irrotational; } ; 

	/// Returns the non-translational part of the velocity potential
	const Scalar& get_psi0() const {return psi0;} ;

	/** Returns the covariant derivative of the velocity potential 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Vector& get_d_psi() const {return d_psi;} ;

	/** Returns the spatial projection of the fluid 3-velocity with 
	 *  respect to the co-orbiting observer. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Vector& get_wit_w() const {return wit_w;} ;

	/** Returns the logarithm of the Lorentz factor between the fluid and 
	 *  the co-orbiting observer.
	 */
	const Scalar& get_loggam() const {return loggam;} ;

	/** Returns the shift vector, divided by \e N, of the rotating 
	 *   coordinates, \f$\beta^i/N\f$. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Vector& get_bsn() const {return bsn;} ;

	/// Returns the centrifugal potential
	const Scalar& get_pot_centri() const {return pot_centri;} ;

	/** Returns the part of the lapse logarithm (gravitational potential 
	 *  at the Newtonian limit) generated principally by the star. 
	 */
	const Scalar& get_logn_auto() const {return logn_auto;} ;

	/** Returns the part of the lapse logarithm (gravitational potential 
	 *  at the Newtonian limit) generated principally by the companion star.
 	 */
	const Scalar& get_logn_comp() const {return logn_comp;} ;

	/** Returns the part of the shift vector \f$\beta^i\f$ generated 
	 *  principally by the star.
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Vector& get_beta_auto() const {return beta_auto;} ;

	/** Returns the part of the shift vector \f$\beta^i\f$ generated 
	 *  principally by the star.
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Vector& get_beta_comp() const {return beta_comp;} ;

	/** Returns the part of the vector field \f$Q\f$ generated principally 
	 *   by the star. 
	 */
	const Scalar& get_lnq_auto() const {return lnq_auto;} ;

	/** Returns the part of the vector field \f$Q\f$ generated principally 
	 *   by the companion star. 
	 */
	const Scalar& get_lnq_comp() const {return lnq_comp;} ;

	/** Returns the covariant derivative of \f$logn\f$. 
	 */
	const Vector& get_dcov_logn() const {return dcov_logn;} ;

	/** Returns the contravariant derivative of \f$logn\f$.
	 */
	const Vector& get_dcon_logn() const {return dcon_logn;} ;

	/** Returns the covariant derivative of \f$\Phi\f$
     *  (logarithm of the conformal factor). 
	 */
	const Vector& get_dcov_phi() const {return dcov_phi;} ;

	/** Returns the contravariant derivative of \f$\Phi\f$
     *  (logarithm of the conformal factor). 
	 */
	const Vector& get_dcon_phi() const {return dcon_phi;} ;

	/// Return the conformal factor \f$\psi^4\f$
	const Scalar& get_psi4() const {return psi4;} ;

	/** Return the flat metric defined on the mapping (Spherical
	 *  components  with respect to the mapping of the star)
	 */
	const Metric& get_flat() const {return flat;} ;	

	/// Return the conformal 3-metric \f$\tilde \gamma\f$
	const Metric& get_gtilde() const {return gtilde;} ;
	
	/** Return the total deviation of the inverse conformal metric 
	 *  \f$\tilde \gamma^{ij}\f$ from the inverse flat metric. 
	 */
	const Sym_tensor& get_hij() const {return hij;} ;

	/** Return the deviation of the inverse conformal metric 
	 *  \f$\tilde \gamma^{ij}\f$ from the inverse flat metric principally
	 *  generated by the star.
	 */
	const Sym_tensor& get_hij_auto() const {return hij_auto;} ;

	/** Return the deviation of the inverse conformal metric 
	 *  \f$\tilde \gamma^{ij}\f$ from the inverse flat metric generated
	 *  principally by the companion star.
	 */
	const Sym_tensor& get_hij_comp() const {return hij_comp;} ;


	/** Returns the part of the extrinsic curvature tensor 
	 *  \f$\tilde K^{ij}\f$ generated by \c beta_auto. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Sym_tensor& get_tkij_auto() const {return tkij_auto;} ;

	/** Returns the part of the extrinsic curvature tensor 
	 *  \f$\tilde K^{ij}\f$ generated by \c beta_comp. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Sym_tensor& get_tkij_comp() const {return tkij_comp;} ;

	/** Returns the part of 
	 *  \f$\tilde K^{ij} \tilde K_{ij}\f$ generated by \c beta_auto. 
	 */
	const Scalar& get_kcar_auto() const {return kcar_auto;} ;

	/** Returns the part of 
	 *  \f$\tilde K^{ij} \tilde K_{ij}\f$ generated by \c beta_comp. 
	 */
	const Scalar& get_kcar_comp() const {return kcar_comp;} ;

	/**
	 * Returns the function used to construct \c beta_auto 
	 from \c beta.
	*/
	const Scalar get_decouple() const {return decouple ;}

	bool is_conf_flat() const {return conf_flat; } ; 

    // Outputs
    // -------
    public:
	virtual void sauve(FILE* ) const ;	    ///< Save in a file
    
    protected:
	/// Operator >> (virtual function called by the operator <<). 
	virtual ostream& operator>>(ostream& ) const ;    

    // Global quantities
    // -----------------
    public:
	/// Baryon mass
    	virtual double mass_b() const ;
	
	/// Gravitational mass
    	virtual double mass_g() const ;
	
	/// Absolute coordinate X of the barycenter of the baryon density, 
    	virtual double xa_barycenter() const ;


    // Computational routines
    // ----------------------
    public: 

	/** Computes the hydrodynamical quantities relative to the Eulerian
	 *  observer from those in the fluid frame, as well as 
	 *  \c wit_w and \c loggam.  
	 *
	 *  The calculation is performed starting from the quantities
	 *  \c ent, \c ener, \c press and \c bsn,  
	 *  which are supposed to be up to date.  
	 *  From these,  the following fields are updated:
	 *  \c gam_euler, \c u_euler, \c ener_euler, 
	 *  \c s_euler, \c stress_euler,  
	 *  \c wit_w and \c loggam. 
	 * 
	 */
	virtual void hydro_euler() ; 
	
	/** Computes metric coefficients from known potentials,
	 * when the companion is another star.
	 *
	 *  The calculation is performed starting from the quantities
	 *  \c logn_auto,  \c lnq_auto, \c beta_auto, 
	 *  \c hij_auto, \c comp.logn_auto,  \c comp.lnq_auto,
	 *  \c comp.beta_auto, \c comp.hij_auto
	 *  which are supposed to be up to date.
	 *  From these,  the following fields are updated:
	 *  \c logn_comp, \c lnq_comp, \c beta_comp,
	 *  \c hij_comp, \c nn,  \c psi4,  \c beta,
	 *  
	 *  @param comp companion star.
	 *  @param omega  angular velocity with respect to an asymptotically 
	 *		  inertial observer
	 */
	void update_metric(const Star_bin& comp, double omega) ;
	
	/** Same as \c update_metric(const Star_bin\& ) but with
	 *  relaxation.
	 *
	 *  @param comp companion star.
	 *  @param star_prev previous value of the star. 
	 *  @param relax relaxation parameter. 
	 *  @param omega  angular velocity with respect to an asymptotically 
	 *		  inertial observer
	 */
	void update_metric(const Star_bin& comp, const Star_bin& star_prev, 
			   double relax, double omega) ; 
	
	/** Computes the derivative of metric functions related to the
	 *  companion star.
	 *  @param omega  angular velocity with respect to an asymptotically 
	 *		  inertial observer
	 */
	 void update_metric_der_comp(const Star_bin& comp, double omega) ;

	/** Computes the quantities \c bsn and \c pot_centri.
	 * 
	 *  The calculation is performed starting from the quantities
	 *  \c nn, \c beta,  \c Q,  
	 *  which are supposed to be up to date.  
	 * 
	 *  @param omega  angular velocity with respect to an asymptotically 
	 *		  inertial observer
	 *  @param x_axe  absolute X coordinate of the rotation axis
	 */
	void kinematics(double omega, double x_axe) ; 
	
	/** Computes the gradient of the total velocity potential \f$\psi\f$. 
	 * 
	 */
	void fait_d_psi() ; 
	
	/** Computes \c tkij_auto and \c akcar_auto from 
	 *  \c beta_auto, \c nn and \c Q.
	 *  @param omega  angular velocity with respect to an asymptotically 
	 *		  inertial observer
	 */
	void extrinsic_curvature(double omega) ; 
		
	
	/** Computes an equilibrium configuration.
	 * 
	 *  @param ent_c  [input] Central enthalpy
	 *  @param mermax [input] Maximum number of steps 
	 *  @param mermax_poisson [input]   Maximum number of steps in 
	 *				    poisson scalar
	 *  @param relax_poisson [input]  Relaxation factor in poisson scalar
	 *  @param mermax_potvit [input]  Maximum number of steps in 
	 *				  Map_radial::poisson_compact
	 *  @param relax_potvit [input]   Relaxation factor in 
	 *				  Map_radial::poisson_compact
	 *  @param thres_adapt  [input]   Threshold on dH/dr for the adaptation 
	 *				  of the mapping
	 *  @param diff [output]   1-D \c Tbl for the storage of some
	 *			    error indicators 
	 */
	void equilibrium(double ent_c, int mermax, int mermax_potvit, 
			 int mermax_poisson, double relax_poisson, 
			 double relax_potvit, double thres_adapt, Tbl& diff,
			 double om) ;


	/** Computes the non-translational part of the velocity scalar potential
	 *  \f$\psi0\f$ by solving the continuity equation.
	 *  
	 *  @param mermax  [input] Maximum number of steps in the iteration
	 *  @param precis  [input] Required precision: the iteration will
	 *			   be stopped when the relative difference
	 *			   on \f$\psi0\f$ between two successive steps
	 *			   is lower than \c precis.
	 *  @param relax   [input] Relaxation factor.  
	 *
	 *  @return Relative error of the resolution obtained by comparing
	 *	    the operator acting on the solution with the source.
	 */
	 double velocity_potential(int mermax, double precis, double relax) ;

	/** Performs a relaxation on \c ent, \c logn_auto,
	 *  \c lnq_auto, \c beta_auto  and \c hij_auto. 
	 * 
	 *  @param star_prev   [input] star at the previous step.
	 *  @param relax_ent   [input] Relaxation factor for \c ent 
	 *  @param relax_met   [input] Relaxation factor for \c logn_auto,
	 *			       \c lnq_auto, \c beta_auto, 
	 *			       only if \c (mer \% fmer_met == 0).
	 *  @param mer	       [input] Step number
	 *  @param fmer_met    [input] Step interval between metric updates
	 */
	void relaxation(const Star_bin& star_prev, double relax_ent, 
			double relax_met, int mer, int fmer_met) ;
	

	/// Test if the gauge conditions we impose are well satisfied
	void test_K_Hi() const ;

	/// Test of the helical symmetry
	void helical(double omega) const ;

	friend class Binary ;

};

			//---------------------------//
			//    class Star_bin_xcts    //
			//---------------------------//

/**
 * Class for stars in binary system in eXtended Conformal Thin Sandwich
 * formulation. *** UNDER DEEVELOPMENT *** \ingroup (star)
 *
 * A \c Star_bin_xcts can be construted in two states, represented by
 * the \c bool member \c irrotational: (i) irrotational
 * (i.e. the fluid motion is irrotational) or (ii) rigidly corotating 
 * with respect to the orbital motion (synchronized binary). 
 *
 */
class Star_bin_xcts : public Star {

    // Data : 
    // -----
    protected:
	/** \c true for an irrotational star, \c false for a
	 *  corotating one
	 */
	bool irrotational ; 
	
	/** Scalar potential \f$\Psi_0\f$ of the non-translational part of
	 *  fluid 4-velocity (in the irrotational case)
	 */
	Scalar psi0 ; 

	/** Gradient of \f$\Psi\f$ (in the irrotational case)
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Vector d_psi ; 
	
	/** Spatial projection of the fluid 3-velocity with respect to  
	 *  the co-orbiting observer. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Vector wit_w ; 
	
	/** Logarithm of the Lorentz factor between the fluid and 
	 *  the co-orbiting observer.
	 */
	Scalar loggam ; 

	/** 3-vector shift, divided by \e N, of the rotating coordinates,
	 *  \f$\beta^i/N\f$. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Vector bsn ; 
	
	/// Centrifugal potential
	Scalar pot_centri ; 	

	/** Scalar field \f$ \chi_{auto} = (N\Psi)_{auto} \f$ generated 
	 * principally by the star.
	 */
	Scalar chi_auto ;

	/** Scalar field \f$ \chi_{comp} = (N\Psi)_{comp} \f$ generated 
	 *  principally by the companion star.
	 */
	Scalar chi_comp ;

	/** Scalar field \f$\Psi_{auto}\f$ generated principally by the
	 *  star.
	 */
	Scalar Psi_auto ;

	/** Scalar field \f$\Psi_{comp}\f$ generated principally by the
	 *  companion star.
	 */
	Scalar Psi_comp ;

	/// Total conformal factor \f$\Psi\f$
	Scalar Psi ;
	
	/// Total function \f$\chi\f$
	Scalar chi ;
	
    /// Conformal factor \f$\psi^4\f$
	Scalar psi4 ;
		
	/** Solution for the vector part of the vector Poisson equation 
	 *  for \f$\beta^i\f$
	 */
	Vector w_beta ;	

	/** Solution for the scalar part of the vector Poisson equation 
	 *  for \f$\beta^i\f$
	 */
	Scalar khi ;	

	/// Covariant derivative of the conformal factor \f$\Psi\f$
	Vector dcov_Psi ;

	/// Covariant derivative of the function \f$\chi\f$
	Vector dcov_chi ;

	///Flat metric defined on the mapping (Spherical components with respect to the mapping of the star) .
	Metric_flat flat ;
	
   /** Part of the shift vector generated principally by the star
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Vector beta_auto ; 
	
	/** Part of the shift vector generated principally by the star
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Vector beta_comp ; 

	/** Part of the extrinsic curvature tensor \f$\hat{A}^{ij}\f$
	 *  generated by \c beta_auto. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Sym_tensor haij_auto ;
	
	/** Part of the extrinsic curvature tensor \f$\hat{A}^{ij}\f$
	 *  generated by \c beta_comp. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	Sym_tensor haij_comp ;
	
	/** Part of the scalar \f$\hat{A}_{ij}\hat{A}^{ij}\f$
	 *  generated by \c beta_auto, i.e. 
	 *    \f$\hat{A}_{ij}^{\rm auto}\hat{A}^{ij}_{\rm auto}\f$ 
	 */
	Scalar hacar_auto ;
	
	/** Part of the scalar \f$\hat{A}_{ij}\hat{A}^{ij}\f$
	 *  generated by \c beta_auto and \c beta_comp, i.e. 
	 *    \f$\hat{A}_{ij}^{\rm auto}\hat{A}^{ij}_{\rm comp}\f$ 
	 */
	Scalar hacar_comp ;

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c \chi_auto.
	 */
	Scalar ssjm1_chi ;

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c \Psi_auto.
	 */
	Scalar ssjm1_psi ;
		
	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c khi. (second scalar equation 
	 *  for the resolution of the vectorial poisson equation for the shift)
	 */
	Scalar ssjm1_khi ;

    /** Effective source at the previous step for wbeta of 
	 *  the vector Poisson equation for \c wbeta (needed for the 
	 *  solution of the vector Poisson equation for the shift 
	 *  \f$\beta^i\f$)
     */      
	Vector ssjm1_wbeta ;
	 
    // Derived data : 
    // ------------
    protected:
	/// Absolute coordinate X of the barycenter of the baryon density
	mutable double* p_xa_barycenter ; 

    // Constructors - Destructor
    // -------------------------
    public:
	/** Standard constructor. 
	 * 
	 * @param mp_i Mapping on which the star will be defined
	 * @param nzet_i Number of domains occupied by the star
	 * @param eos_i Equation of state of the stellar matter
	 * @param irrot should be \c true for an irrotational star, 
	 *		    \c false for a corotating one
	 */
	Star_bin_xcts(Map& mp_i, int nzet_i, const Eos& eos_i, bool irrot) ;			
		
	Star_bin_xcts(const Star_bin_xcts& ) ;		///< Copy constructor

	/** Constructor from a file (see \c sauve(FILE* )). 
	 * 
	 * @param mp_i Mapping on which the star will be defined
	 * @param eos_i Equation of state of the stellar matter
	 * @param fich	input file (must have been created by the function
	 *	\c sauve)
	 */
	Star_bin_xcts(Map& mp_i, const Eos& eos_i, FILE* fich) ;
    		
	virtual ~Star_bin_xcts() ;			///< Destructor


    // Memory management
    // -----------------
    protected:
	/// Deletes all the derived quantities
	virtual void del_deriv() const ; 
	
	/// Sets to \c 0x0 all the pointers on derived quantities
	virtual void set_der_0x0() const ; 

	/** Sets to \c ETATNONDEF (undefined state) the hydrodynamical 
	 *  quantities relative to the Eulerian observer.
	 */
	virtual void del_hydro_euler() ; 
	

    // Mutators / assignment
    // ---------------------
    public:
	/// Assignment to another \c Star_bin_xcts
	void operator=(const Star_bin_xcts& ) ;	
	
	/// Read/write the centrifugal potential
	Scalar& set_pot_centri() ;
	
	/// Read/write the conformal factor \f$\Psi_{auto}\f$ 
	Scalar& set_Psi_auto() ; 

	/// Read/write the conformal factor \f$\Psi_{comp}\f$ 
	Scalar& set_Psi_comp() ; 

	/// Read/write the conformal factor \f$\chi_{auto}\f$ 
	Scalar& set_chi_auto() ; 

	/// Read/write the conformal factor \f$\chi_{comp}\f$ 
	Scalar& set_chi_comp() ; 
		
	/// Read/write of \f$\beta_{auto}\f$
	Vector& set_beta_auto() ;	

	/// Read/write of \f$\beta\f$
	Vector& set_beta() ;	
	
    // Accessors
    // ---------
    public:
	/** Returns \c true for an irrotational motion, \c false for 
	 *  a corotating one. 
	 */
	bool is_irrotational() const { return irrotational; } ; 

	/// Returns the non-translational part of the velocity potential
	const Scalar& get_psi0() const {return psi0 ; } ;

	/** Returns the covariant derivative of the velocity potential 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Vector& get_d_psi() const {return d_psi ; } ;

	/** Returns the spatial projection of the fluid 3-velocity with 
	 *  respect to the co-orbiting observer. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Vector& get_wit_w() const {return wit_w ; } ;

	/** Returns the logarithm of the Lorentz factor between the fluid and 
	 *  the co-orbiting observer.
	 */
	const Scalar& get_loggam() const {return loggam ; } ;

	/** Returns the shift vector, divided by \e N, of the rotating 
	 *   coordinates, \f$\beta^i/N\f$. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Vector& get_bsn() const {return bsn ; } ;

	/// Returns the centrifugal potential
	const Scalar& get_pot_centri() const {return pot_centri ; } ;

	/** Returns the part of the shift vector \f$\beta^i\f$ generated 
	 *  principally by the star (\f$\beta^i_{auto}\f$).
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Vector& get_beta_auto() const {return beta_auto ; } ;

	/** Returns the part of the shift vector \f$\beta^i\f$ generated 
	 *  principally by the companion (\f$\beta^i_{comp}\f$).
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Vector& get_beta_comp() const {return beta_comp ; } ;
	
   /**  Returns the scalar field \f$\Psi_{auto}\f$ generated principally 
     *  by the star.
	 */
    const Scalar& get_Psi_auto() const {return Psi_auto ; } ;

   /**  Returns the scalar field \f$\Psi_{comp}\f$ generated principally 
     *  by the companion star.
	 */
    const Scalar& get_Psi_comp() const {return Psi_comp ; } ;

   /**  Returns the scalar field \f$\chi_{auto} = (N\Psi)_{auto}\f$ 
     *  generated principally by the star.
	 */
    const Scalar& get_chi_auto() const {return chi_auto ; } ;

   /**  Returns the scalar field \f$\chi_{comp} = (N\Psi)_{comp}\f$ 
     *  generated principally by the companion star.
	 */
    const Scalar& get_chi_comp() const {return chi_comp ; } ;
        
	 /** Returns the covariant derivative of \f$\chi\f$. 
	 */
	const Vector& get_dcov_chi() const {return dcov_chi ; } ;

	/** Returns the covariant derivative of 
	 *  the conformal factor \f$\Psi\f$
     */
    const Vector& get_dcov_Psi() const {return dcov_Psi ; } ;

	/// Return the conformal factor \f$\Psi\f$
	const Scalar& get_Psi() const {return Psi ; } ;

	/// Return the function \f$\chi\f$
	const Scalar& get_chi() const {return chi ; } ;
	
    /// Return the conformal factor \f$\Psi^4\f$
	const Scalar& get_psi4() const {return psi4 ; } ;
	
   /** Return the flat metric defined on the mapping (Spherical
	 *  components  with respect to the mapping of the star)
	 */
	const Metric& get_flat() const {return flat ; } ;	

	/** Returns the part of the extrinsic curvature tensor 
	 *  \f$\hat{A}^{ij}\f$ generated by \c beta_auto. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Sym_tensor& get_haij_auto() const {return haij_auto ; } ;

	/** Returns the part of the extrinsic curvature tensor 
	 *  \f$\hat{A}^{ij}\f$ generated by \c beta_comp. 
	 *  (Spherical components with respect to the mapping of the star)
	 */
	const Sym_tensor& get_haij_comp() const {return haij_comp ; } ;

	/** Returns the part of 
	 *  \f$\hat{A}^{ij}\hat{A}_{ij}\f$ generated by \c beta_auto. 
	 */
	const Scalar& get_hacar_auto() const {return hacar_auto ; } ;

	/** Returns the part of 
	 *  \f$\hat{A}^{ij}\hat{A}_{ij}\f$ generated by \c beta_comp. 
	 */
	const Scalar& get_hacar_comp() const {return hacar_comp ; } ;
 
    // Outputs
    // -------
    public:
	virtual void sauve(FILE* ) const ;	    ///< Save in a file
    
    protected:
	/// Operator >> (virtual function called by the operator <<). 
	virtual ostream& operator>>(ostream& ) const ;    

    // Global quantities
    // -----------------
    public:
	/// Baryon mass
    	virtual double mass_b() const ;
	
	/// Gravitational mass
    	virtual double mass_g() const ;
	
	/// Absolute coordinate X of the barycenter of the baryon density, 
    	virtual double xa_barycenter() const ;


    // Computational routines
    // ----------------------
    public: 

	/** Computes the hydrodynamical quantities relative to the Eulerian
	 *  observer from those in the fluid frame, as well as 
	 *  \c wit_w and \c loggam.  
	 *
	 *  The calculation is performed starting from the quantities
	 *  \c ent, \c ener, \c press and \c bsn,  
	 *  which are supposed to be up to date.  
	 *  From these,  the following fields are updated:
	 *  \c gam_euler, \c u_euler, \c ener_euler, 
	 *  \c s_euler, \c stress_euler,  
	 *  \c wit_w and \c loggam. 
	 * 
	 */
	virtual void hydro_euler() ; 
	
	/** Computes metric coefficients from known potentials,
	 * when the companion is another star.
	 *
	 *  The calculation is performed starting from the quantities
	 *  \c Psi_auto,  \c chi_auto, \c beta_auto, 
	 *  \c comp.Psi_auto,  \c comp.chi_auto,
	 *  \c comp.beta_auto 
	 *  which are supposed to be up to date.
	 *  From these,  the following fields are updated:
	 *  \c Psi_comp, \c chi_comp, \c beta_comp,
	 *  \c nn,  \c psi4,  \c beta.
	 *  
	 *  @param comp companion star.
	 *  @param omega  angular velocity with respect to an asymptotically 
	 *		  inertial observer
	 */
	void update_metric(const Star_bin_xcts& comp) ;
	
	/** Same as \c update_metric(const Star_bin_xcts\& ) but with
	 *  relaxation.
	 *
	 *  @param comp companion star.
	 *  @param star_prev previous value of the star. 
	 *  @param relax relaxation parameter. 
	 *  @param omega  angular velocity with respect to an asymptotically 
	 *		  inertial observer
	 */
	void update_metric(const Star_bin_xcts& comp,
					   const Star_bin_xcts& star_prev, 
			   		   double relax) ; 
	
	/** Computes the derivative of metric functions related to the
	 *  companion star
	 */
	 void update_metric_der_comp(const Star_bin_xcts& comp) ;

	/** Computes the quantities \c bsn and \c pot_centri.
	 * 
	 *  The calculation is performed starting from the quantities
	 *  \c nn, \c beta,  \c Psi,  
	 *  which are supposed to be up to date.  
	 * 
	 *  @param omega  angular velocity with respect to an asymptotically 
	 *		  inertial observer
	 *  @param x_axe  absolute X coordinate of the rotation axis
	 */
	void kinematics(double omega, double x_axe) ; 
	
	/** Computes the gradient of the total velocity potential \f$\psi\f$. 
	 * 
	 */
	void fait_d_psi() ; 
	
   /** Computes \c haij_auto  and \c hacar_auto  from 
	 *  \c beta_auto, \c nn and \c Psi .
	 */
	void extrinsic_curvature() ; 
	
	/** Computes an equilibrium configuration.
	 * 
	 *  @param ent_c  [input] Central enthalpy
	 *  @param mermax [input] Maximum number of steps 
	 *  @param mermax_poisson [input]   Maximum number of steps in 
	 *				    poisson scalar
	 *  @param relax_poisson [input]  Relaxation factor in poisson scalar
	 *  @param mermax_potvit [input]  Maximum number of steps in 
	 *				  Map_radial::poisson_compact
	 *  @param relax_potvit [input]   Relaxation factor in 
	 *				  Map_radial::poisson_compact
	 *  @param thres_adapt [input]   Threshold on dH/dr for the adaptation 
	 *				  of the mapping
	 *  @param fact [input]    1-D \c Tbl for the input of some factors: 
	 *          \li \c fact(0)  : A resizing factor for the first shell
	 *  @param ent_limit [input]	array of enthalpy values to be set at 
	 *			the boundaries between the domains; if set to 0x0 (default), 
	 *			the initial values will be kept.
	 *  @param diff [output]   1-D \c Tbl for the storage of some
	 *			    error indicators
	 */
	void equilibrium(double ent_c, int mermax, int mermax_potvit, 
			 int mermax_poisson, double relax_poisson, 
			 double relax_potvit, double thres_adapt, 
			 const Tbl& fact, const Tbl* pent_limit, 
			 Tbl& diff) ;

	/** Computes the non-translational part of the velocity scalar potential
	 *  \f$\psi0\f$ by solving the continuity equation.
	 *  
	 *  @param mermax  [input] Maximum number of steps in the iteration
	 *  @param precis  [input] Required precision: the iteration will
	 *			   be stopped when the relative difference
	 *			   on \f$\psi0\f$ between two successive steps
	 *			   is lower than \c precis.
	 *  @param relax   [input] Relaxation factor.  
	 *
	 *  @return Relative error of the resolution obtained by comparing
	 *	    the operator acting on the solution with the source.
	 */
	 double velocity_potential(int mermax, double precis, double relax) ;

	/** Performs a relaxation on \c ent, \c Psi_auto,
	 *  \c chi_auto and \c beta_auto. 
	 * 
	 *  @param star_prev   [input] star at the previous step.
	 *  @param relax_ent   [input] Relaxation factor for \c ent 
	 *  @param relax_met   [input] Relaxation factor for \c logn_auto,
	 *			       \c lnq_auto, \c beta_auto, 
	 *			       only if \c (mer \% fmer_met == 0).
	 *  @param mer	       [input] Step number
	 *  @param fmer_met    [input] Step interval between metric updates
	 */
	void relaxation(const Star_bin_xcts& star_prev, double relax_ent, 
			double relax_met, int mer, int fmer_met) ;

	friend class Binary_xcts ;

}; 

}
#endif