This file is indexed.

/usr/include/lorene/C++/Include/star_rot.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
/*
 *  Definition of Lorene class Star_rot
 *				 
 */

/*
 *   Copyright (c) 2010 Eric Gourgoulhon 
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


#ifndef __STAR_ROT_H_ 
#define __STAR_ROT_H_ 

/*
 * $Id: star_rot.h,v 1.6 2015/05/19 09:30:55 j_novak Exp $
 * $Log: star_rot.h,v $
 * Revision 1.6  2015/05/19 09:30:55  j_novak
 * New methods for computing the area of the star and its mean radius.
 *
 * Revision 1.5  2014/10/13 08:52:36  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.4  2010/02/08 10:56:30  j_novak
 * Added a few things missing for the reading from resulting file.
 *
 * Revision 1.3  2010/02/02 13:35:00  e_gourgoulhon
 * Remove the "under construction" mark.
 *
 * Revision 1.2  2010/01/25 18:14:05  e_gourgoulhon
 * Added member unsurc2
 * Added method is_relativistic()
 * Suppressed method f_eccentric
 *
 * Revision 1.1  2010/01/24 16:07:45  e_gourgoulhon
 * New class Star_rot.
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/star_rot.h,v 1.6 2015/05/19 09:30:55 j_novak Exp $
 *
 */

// Headers Lorene
#include "star.h"

namespace Lorene {
class Eos ;

			//--------------------------//
			//    class Star_rot        //
			//--------------------------//

/**
 * Class for isolated rotating stars. \ingroup (star)
 * 
 * The metric is
 * \f[
 *   ds^2 = - N^2 dt^2 + A^2 (dr^2 + r^2 d\theta^2)
 *		       + B^2 r^2 \sin^2\theta (d\varphi - N^\varphi dt)^2
 * \f]
 *
 * A star of class \c Star_rot  can be either relativistic or Newtonian, 
 * depending on the boolean indicator \c relativistic . For a Newtonian
 * star, the metric coefficients \e N, \e A, and \e B  are set to 1,  and \f$N^\varphi\f$ is
 * set to zero; the only relevant gravitational quantity in this case is
 * \c logn  which represents the Newtonian gravitational potential generated by the star. 
 * 
 * \version $Id: star_rot.h,v 1.6 2015/05/19 09:30:55 j_novak Exp $
 */
class Star_rot : public Star {

    // Data : 
    // -----
    protected:
	/** Indicator of relativity: \c true  for a relativistic star,
	 *	\c false  for a Newtonian one. 
	 */
	bool relativistic ;

	/** \f$1/c^2\f$ : \c unsurc2=1 for a relativistic star,
	 *  0 for a Newtonian one. 
	 */
	double unsurc2 ; 	     

	double omega ;	    ///< Rotation angular velocity (\c [f_unit] ) 

	/// Square of the metric factor \e A 
	Scalar a_car ; 

	/// Metric factor \e B 
	Scalar bbb ; 

	/// Square of the metric factor \e B 
	Scalar b_car ; 

	/// Metric coefficient \f$N^\varphi\f$
	Scalar nphi ; 

	/** Component \f$\tilde N^\varphi = N^\varphi r\sin\theta\f$ of the
	 *  shift vector
	 */
	Scalar tnphi ; 

	/// Norm of \c u_euler 
	Scalar uuu ;		
	
	/** Part of the Metric potential \f$\nu = \ln N\f$ = \c logn 
	 *  generated by the matter terms
	 */
	Scalar nuf ;	

	/** Part of the Metric potential \f$\nu = \ln N\f$ = \c logn 
	 *  generated by the quadratic terms
	 */
	Scalar nuq ;	

	/// Metric potential \f$\zeta = \ln(AN)\f$ 
	Scalar dzeta ;	

	/// Metric potential \f$\tilde G = (NB-1) r\sin\theta\f$
	Scalar tggg ; 

	/** Vector \f$W^i\f$ used in the decomposition of \c shift ,
	 *  following Shibata's prescription 
	 *  [\a Prog. \a Theor. \a Phys. \b 101 , 1199 (1999)] :
	 * \f[
	 *  N^i = {7\over 8} W^i - {1\over 8} 
	 *			\left(\nabla^i\chi+\nabla^iW^kx_k\right)
	 * \f]
	 * NB: \c w_shift  contains the components of \f$W^i\f$
	 *      with respect to the Cartesian triad associated with the 
	 *	mapping \c mp . 
	 */
	Vector w_shift ; 
	
	/** Scalar \f$\chi\f$ used in the decomposition of \c shift ,
	 *  following Shibata's prescription 
	 *  [\a Prog. \a Theor. \a Phys. \b 101 , 1199 (1999)] :
	 * \f[
	 *  N^i = {7\over 8} W^i - {1\over 8} 
	 *			\left(\nabla^i\chi+\nabla^iW^kx_k\right)
	 * \f]
	 */
	Scalar khi_shift ; 

	/** Tensor \f${\tilde K_{ij}}\f$ related to the extrinsic curvature
	 *  tensor by \f${\tilde K_{ij}} = B^{-2} K_{ij}\f$.
	 *  \c tkij  contains the Cartesian components of
	 *  \f${\tilde K_{ij}}\f$. 
	 */
	Sym_tensor tkij ; 

	/** Scalar \f$A^2 K_{ij} K^{ij}\f$.
	 *  For axisymmetric stars, this quantity is related to the 
	 *  derivatives of \f$N^\varphi\f$ by
	 * \f[
	 *	A^2 K_{ij} K^{ij} = {B^2 \over 2 N^2} \, r^2\sin^2\theta \,  
	 *    \left[ \left( {\partial N^\varphi \over \partial r} \right) ^2
	 *	    + {1\over r^2} \left( {\partial N^\varphi \over 
	 *		    \partial \theta} \right) ^2 \right] \ . 
	 * \f]
	 * In particular it is related to the quantities \f$k_1\f$ and \f$k_2\f$
	 * introduced by Eqs.~(3.7) and (3.8) of 
	 * Bonazzola et al. \a Astron. \a Astrophys. \b 278 , 421 (1993)
	 * by 
	 * \f[
	 *	A^2 K_{ij} K^{ij} = 2 A^2 (k_1^2 + k_2^2) \ . 
	 * \f]
	 */
	 Scalar ak_car ; 

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c nuf  by means of
	 *  \c Map_et::poisson .
	 */
	Scalar ssjm1_nuf ; 

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c nuq  by means of
	 *  \c Map_et::poisson .
	 */
	Scalar ssjm1_nuq ; 

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c dzeta .
	 */
	Scalar ssjm1_dzeta ; 

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for \c tggg .
	 */
	Scalar ssjm1_tggg ; 

	/** Effective source at the previous step for the resolution of 
	 *  the Poisson equation for the scalar \f$\chi\f$ by means of
	 *  \c Map_et::poisson . 
	 *  \f$\chi\f$ is an intermediate quantity for the resolution of the
	 *  elliptic equation for the shift vector \f$N^i\f$
	 */
	 Scalar ssjm1_khi ; 
	 
	/** Effective source at the previous step for the resolution of 
	 *  the vector Poisson equation for \f$W^i\f$.
	 *  \f$W^i\f$ is an intermediate quantity for the resolution of the
	 *  elliptic equation for the shift vector \f$N^i\f$
	 *  (Components with respect to the Cartesian triad associated with 
	 *   the mapping \c mp )
	 */
	 Vector ssjm1_wshift ; 
	 

    // Derived data : 
    // ------------
    protected:
	
	mutable double* p_angu_mom ;	///< Angular momentum 
	mutable double* p_tsw ;		///< Ratio T/W
	mutable double* p_grv2 ;	///< Error on the virial identity GRV2
	mutable double* p_grv3 ;	///< Error on the virial identity GRV3
	mutable double* p_r_circ ;	///< Circumferential radius
	mutable double* p_aplat ;	///< Flatening r_pole/r_eq
	mutable double* p_area ;        ///< Integrated surface area 
	mutable double* p_z_eqf ;	///< Forward redshift factor at equator
	mutable double* p_z_eqb ;	///< Backward redshift factor at equator
	mutable double* p_z_pole ;	///< Redshift factor at North pole
	mutable double* p_mom_quad ;	///< Quadrupole moment
	mutable double* p_r_isco ;	///< Circumferential radius of the ISCO
	mutable double* p_f_isco ;	///< Orbital frequency of the ISCO
	/// Specific energy of a particle on the ISCO 
	mutable double* p_espec_isco ;	
	/// Specific angular momentum of a particle on the ISCO
	mutable double* p_lspec_isco ;	
        mutable double* p_f_eq ;        ///< Orbital frequency at the equator
	
	 

    // Constructors - Destructor
    // -------------------------
    public:
	/** Standard constructor. 
	 * 
	 * @param mp_i Mapping on which the star is contructed
	 * @param nzet_i Number of domains occupied by the star
	 * @param relat \c true  for a relativistic
	 *			star,  \c false  for a Newtonian one
	 * @param eos_i Equation of state of the stellar matter
	 */
	Star_rot(Map& mp_i, int nzet_i, bool relat, const Eos& eos_i) ;			
	
	
	Star_rot(const Star_rot& ) ;		///< Copy constructor

	/** Constructor from a file (see \c sauve(FILE*) ). 
	 * 
	 * @param mp_i Mapping on which the star is constructed
	 * @param eos_i Equation of state of the stellar matter
	 * @param fich	input file (must have been created by the function
	 *	\c Star_rot::sauve )
	 */
	Star_rot(Map& mp_i, const Eos& eos_i, FILE* fich) ;    		

	virtual ~Star_rot() ;			///< Destructor


    // Memory management
    // -----------------
    protected:
	/// Deletes all the derived quantities
	virtual void del_deriv() const ; 
	
	/// Sets to \c 0x0  all the pointers on derived quantities
	virtual void set_der_0x0() const ; 

	/** Sets to \c ETATNONDEF  (undefined state) the hydrodynamical 
	 *  quantities relative to the Eulerian observer.
	 */
	virtual void del_hydro_euler() ; 
	

    // Mutators / assignment
    // ---------------------
    public:
	/// Assignment to another \c Star_rot 
	void operator=(const Star_rot& ) ;	
	
    // Accessors
    // ---------
    public:
	/** Returns \c true  for a relativistic star, \c false  for 
	 *  a Newtonian one
	 */
	bool is_relativistic() const {return relativistic; } ; 	

	/** Returns the central value of the rotation angular velocity 
	 *  (\c [f_unit] )
	 */ 
	virtual double get_omega_c() const ;	    

	/// Returns the metric factor \e B 
	const Scalar& get_bbb() const {return bbb;} ; 

	/// Returns the square of the metric factor \e A 
	const Scalar& get_a_car() const {return a_car;} ; 

	/// Returns the square of the metric factor \e B 
	const Scalar& get_b_car() const {return b_car;} ; 

	/// Returns the metric coefficient \f$N^\varphi\f$
	const Scalar& get_nphi() const {return nphi;} ; 

	/** Returns the component \f$\tilde N^\varphi = N^\varphi r\sin\theta\f$ 
	 *  of the shift vector
	 */
	const Scalar& get_tnphi() const {return tnphi;} ; 

	/// Returns the norm of \c u_euler 
	const Scalar& get_uuu() const {return uuu;} ;		
	
	/** Returns the part of the Metric potential \f$\nu = \ln N\f$ = \c logn 
	 *  generated by the matter terms
	 */
	const Scalar& get_nuf() const {return nuf;} ;	

	/** Returns the Part of the Metric potential \f$\nu = \ln N\f$ = \c logn 
	 *  generated by the quadratic terms
	 */
	const Scalar& get_nuq() const {return nuq;} ;	

	/// Returns the Metric potential \f$\zeta = \ln(AN)\f$ 
	const Scalar& get_dzeta() const {return dzeta;} ;	

	/// Returns the Metric potential \f$\tilde G = (NB-1) r\sin\theta\f$
	const Scalar& get_tggg() const {return tggg;} ; 

	/** Returns the vector \f$W^i\f$ used in the decomposition of 
	 *  \c shift ,
	 *  following Shibata's prescription 
	 *  [\a Prog. \a Theor. \a Phys. \b 101 , 1199 (1999)] :
	 * \f[
	 *  N^i = {7\over 8} W^i - {1\over 8} 
	 *			\left(\nabla^i\chi+\nabla^iW^kx_k\right)
	 * \f]
	 * NB: \c w_shift  contains the components of \f$W^i\f$
	 *      with respect to the Cartesian triad associated with the 
	 *	mapping \c mp . 
	 */
	const Vector& get_w_shift() const {return w_shift;} ; 
	
	/** Returns the scalar \f$\chi\f$ used in the decomposition of 
	 *  \c shift  
	 *  following Shibata's prescription 
	 *  [\a Prog. \a Theor. \a Phys. \b 101 , 1199 (1999)] :
	 * \f[
	 *  N^i = {7\over 8} W^i - {1\over 8} 
	 *			\left(\nabla^i\chi+\nabla^iW^kx_k\right)
	 * \f]
	 * NB: \c w_shift  contains the components of \f$W^i\f$
	 *      with respect to the Cartesian triad associated with the 
	 *	mapping \c mp . 
	 */
	const Scalar& get_khi_shift() const {return khi_shift;} ; 

	/** Returns the tensor \f${\tilde K_{ij}}\f$ related to the extrinsic 
	 *  curvature tensor by \f${\tilde K_{ij}} = B^{-2} K_{ij}\f$.
	 *  \c tkij  contains the Cartesian components of
	 *  \f${\tilde K_{ij}}\f$. 
	 */
	const Sym_tensor& get_tkij() const {return tkij;} ; 

	/** Returns the scalar \f$A^2 K_{ij} K^{ij}\f$.
	 *  For axisymmetric stars, this quantity is related to the 
	 *  derivatives of \f$N^\varphi\f$ by
	 * \f[
	 *	A^2 K_{ij} K^{ij} = {B^2 \over 2 N^2} \, r^2\sin^2\theta \,  
	 *    \left[ \left( {\partial N^\varphi \over \partial r} \right) ^2
	 *	    + {1\over r^2} \left( {\partial N^\varphi \over 
	 *		    \partial \theta} \right) ^2 \right] \ . 
	 * \f]
	 * In particular it is related to the quantities \f$k_1\f$ and \f$k_2\f$
	 * introduced by Eqs. (3.7) and (3.8) of 
	 * Bonazzola et al. \a Astron. \a Astrophys. \b 278 , 421 (1993)
	 * by 
	 * \f[
	 *	A^2 K_{ij} K^{ij} = 2 A^2 (k_1^2 + k_2^2) \ . 
	 * \f]
	 */
	 const Scalar& get_ak_car() const {return ak_car;} ; 

    // Outputs
    // -------
    public:
	virtual void sauve(FILE* ) const ;	    ///< Save in a file
    
	/// Display in polytropic units
	virtual void display_poly(ostream& ) const ; 

    protected:
	/// Operator >> (virtual function called by the operator <<). 
	virtual ostream& operator>>(ostream& ) const ;    

	/// Printing of some informations, excluding all global quantities
	virtual void partial_display(ostream& ) const ;    

    // Global quantities
    // -----------------
    public:
	
	/** Description of the stellar surface: returns a 2-D \c Itbl 
	 *	containing the 
	 *	values of the domain index \e l  on the surface at the 
	 *	collocation points in \f$(\theta', \phi')\f$.
	 *	The stellar surface is defined as the location where
	 *	the enthalpy (member \c ent ) vanishes.
	 */
	virtual const Itbl& l_surf() const ; 
	
	virtual double mass_b() const ;	    ///< Baryon mass
	virtual double mass_g() const ;	    ///< Gravitational mass
	virtual double angu_mom() const ;	///< Angular momentum 
	virtual double tsw() const ;		///< Ratio T/W

	/** Error on the virial identity GRV2.
	 *  This indicator is only valid for relativistic computations.
	 */
	virtual double grv2() const ;	

	/** Error on the virial identity GRV3.
	 *  The error is computed as the integral defined
	 *  by Eq. (43) of [Gourgoulhon and Bonazzola, 
	 *  \a Class. \a Quantum \a Grav. \b 11, 443 (1994)] divided by
	 *  the integral of the matter terms.
	 * 
	 *  @param ost output stream to give details of the computation;
	 *		if set to 0x0 [default value], no details will be
	 *		given.
	 *   
	 */
	virtual double grv3(ostream* ost = 0x0) const ;	

	virtual double r_circ() const ;	///< Circumferential radius
	virtual double aplat() const ;	///< Flatening r_pole/r_eq
	virtual double area() const ;   ///< Integrated surface area in \f${\rm km}^2\f$
	/// Mean star radius from the area \f$ r_{\rm mean} = \sqrt{\mathcal{A}} / 4\pi\f$
	virtual double mean_radius() const ; 
	virtual double z_eqf() const ;	///< Forward redshift factor at equator
	virtual double z_eqb() const ;	///< Backward redshift factor at equator
	virtual double z_pole() const ;	///< Redshift factor at North pole
    
	/** Quadrupole moment.
	 *  The quadrupole moment \e Q is defined according to Eq. (7) of
	 *  [Salgado, Bonazzola, Gourgoulhon and Haensel, \a Astron. \a Astrophys.
	 *   \b 291 , 155 (1994)]. At the Newtonian limit it is related to
	 *  the component \f${\bar I}_{zz}\f$ of the MTW (1973) reduced quadrupole 
	 *  moment \f${\bar I}_{ij}\f$ by: \f$Q = -3/2 {\bar I}_{zz}\f$. 
	 *  Note that \e Q is the negative of the quadrupole moment defined 
	 *  by Laarakkers and Poisson, \a Astrophys. \a J. \b 512 , 282 (1999).
	 */
	virtual double mom_quad() const ;	

	/** Circumferential radius of the innermost stable circular orbit (ISCO).	
	 *
	 *  @param ost output stream to give details of the computation;
	 *		if set to 0x0 [default value], no details will be
	 *		given.
	 */
	virtual double r_isco(ostream* ost = 0x0) const ;	
 	
 	/// Orbital frequency at the innermost stable circular orbit (ISCO).	
 	virtual double f_isco() const ;	

	/// Energy of a particle on the ISCO 
 	virtual double espec_isco() const ;	
	
	/// Angular momentum of a particle on the ISCO
 	virtual double lspec_isco() const ;	

        /// Orbital frequency at the equator.
	virtual double f_eq() const ;
	

    // Computational routines
    // ----------------------
    public: 
	/** Computes the hydrodynamical quantities relative to the Eulerian
	 *  observer from those in the fluid frame.
	 *
	 *  The calculation is performed starting from the quantities
	 *  \c ent , \c ener , \c press , and \c a_car ,  
	 *  which are supposed to be up to date.  
	 *  From these,  the following fields are updated:
	 *  \c gam_euler , \c u_euler , \c ener_euler , \c s_euler . 
	 * 
	 */
	virtual void hydro_euler() ; 
	
	/** Computes metric coefficients from known potentials. 
	 * 
	 *  The calculation is performed starting from the quantities
	 *  \c logn ,  \c dzeta , \c tggg  and \c shift , 
	 *  which are supposed to be up to date.  
	 *  From these,  the following fields are updated:
	 *  \c nnn , \c a_car ,  \c bbb  and \c b_car, as well as 
	 *  the 3-metric \c gamma. 
	 * 
	 */
	void update_metric() ; 
		
	/** Computes \c shift  from \c w_shift  and \c khi_shift 
	 *  according to Shibata's prescription 
	 *  [\a Prog. \a Theor. \a Phys. \b 101 , 1199 (1999)] :
	 * \f[
	 *  N^i = {7\over 8} W^i - {1\over 8} 
	 *			\left(\nabla^i\chi+\nabla^iW^kx_k\right)
	 * \f]
	 */
	void fait_shift() ; 
	
	/** Computes \c tnphi  and \c nphi  from the Cartesian 
	 *   components of the shift, stored in \c shift .
	 */
	void fait_nphi() ; 
		
	/** Computes \c tkij  and \c ak_car  from 
	 *  \c shift , \c nnn  and \c b_car .
	 */
	void extrinsic_curvature() ;
	
	/** Computes the coefficient \f$\lambda\f$ which ensures that the
	 *	GRV2 virial identity is satisfied.
	 *  \f$\lambda\f$ is the coefficient by which one must multiply
	 *  the quadratic source term \f$\sigma_q\f$ of the 2-D Poisson equation
	 *	\f[
	 *		\Delta_2 u = \sigma_m + \sigma_q
	 *	\f]
	 *  in order that the total source does not contain any monopolar term,
	 *  i.e. in order that
	 *  \f[
	 *		\int_0^{2\pi} \int_0^{+\infty} \sigma(r, \theta)
	 *				\, r \, dr \, d\theta = 0	    \ ,
	 *  \f]
	 *  where \f$\sigma = \sigma_m + \sigma_q\f$.
	 *	\f$\lambda\f$ is computed according to the formula
	 *  \f[
	 *		\lambda = - { \int_0^{2\pi} \int_0^{+\infty} \sigma_m(r, \theta)
	 *				\, r \, dr \, d\theta	    \over
	 * 			\int_0^{2\pi} \int_0^{+\infty} \sigma_q(r, \theta)
	 *				\, r \, dr \, d\theta } \ .
	 *  \f]
	 *  Then, by construction, the new source
	 *	\f$\sigma' = \sigma_m + \lambda \sigma_q\f$ has a vanishing monopolar
	 *  term.
	 *
	 *	@param sou_m [input] matter source term \f$\sigma_m\f$
	 *	@param sou_q [input] quadratic source term \f$\sigma_q\f$
	 *  @return	value of \f$\lambda\f$
	 */
	static double lambda_grv2(const Scalar& sou_m, const Scalar& sou_q) ;
		
	/** Computes an equilibrium configuration.
	 *  
	 *  @param ent_c  [input] Central enthalpy 
	 *  @param omega0  [input] Requested angular velocity 
	 *			     (if \c fact_omega=1. )
	 *  @param fact_omega [input] 1.01 = search for the Keplerian frequency,
	 *			      1. = otherwise.
	 *  @param nzadapt  [input] Number of (inner) domains where the mapping 
	 *			    adaptation to an iso-enthalpy surface
	 *			    should be performed
	 *  @param ent_limit [input] 1-D \c Tbl  of dimension \c nzet  which
	 *				defines the enthalpy at the outer boundary
	 *				of each domain
	 *  @param icontrol [input] Set of integer parameters (stored as a
	 *			    1-D \c Itbl  of size 8) to control the 
	 *			    iteration: 
	 *	\li \c icontrol(0) = mer_max  : maximum number of steps 
	 *	\li \c icontrol(1) = mer_rot  : step at which the rotation is 
	 *				      switched on 
	 *	\li \c icontrol(2) = mer_change_omega  : step at which the rotation
	 *			  velocity is changed to reach the final one  
	 *	\li \c icontrol(3) = mer_fix_omega  :  step at which the final
	 *			    rotation velocity must have been reached  
	 *	\li \c icontrol(4) = mer_mass  : the absolute value of 
	 *			    \c mer_mass  is the step from which the 
	 *			    baryon mass is forced to converge, 
	 *			    by varying the central enthalpy 
	 *			    (\c mer_mass>0 ) or the angular 
	 *			    velocity (\c mer_mass<0 ) 
	 *	\li \c icontrol(5) = mermax_poisson  : maximum number of steps in 
	 *				\c Map_et::poisson  
	 *	\li \c icontrol(6) = mer_triax  : step at which the 3-D 
	 *				perturbation is switched on 
	 *	\li \c icontrol(7) = delta_mer_kep  : number of steps
	 *			    after \c mer_fix_omega  when \c omega 
	 *			    starts to be increased by \c fact_omega 
	 *			    to search for the Keplerian velocity
	 * 	 
	 *  @param control [input] Set of parameters (stored as a 
	 *			    1-D \c Tbl  of size 7) to control the 
	 *			    iteration: 
	 *	\li \c control(0) = precis  : threshold on the enthalpy relative 
	 *				change for ending the computation 
	 *	\li \c control(1) = omega_ini  : initial angular velocity, 
	 *			    switched on only if \c mer_rot<0 , 
	 *			    otherwise 0 is used  
	 *	\li \c control(2) = relax  : relaxation factor in the main 
	 *				   iteration  
	 *	\li \c control(3) = relax_poisson  : relaxation factor in 
	 *				   \c Map_et::poisson  
	 *	\li \c control(4) = thres_adapt  :  threshold on dH/dr for 
	 *			    freezing the adaptation of the mapping 
	 *	\li \c control(5) = ampli_triax  :  relative amplitude of 
	 *			    the 3-D perturbation 
	 *	\li \c control(6) = precis_adapt  : precision for 
	 *			    \c Map_et::adapt 
	 *
	 *  @param mbar_wanted [input] Requested baryon mass (effective only 
	 *				if \c mer_mass > \c mer_max )
	 *  @param aexp_mass [input] Exponent for the increase factor of the 
	 *			      central enthalpy to converge to the 
	 *			      requested baryon mass
	 *  @param diff [output]   1-D \c Tbl  of size 7 for the storage of 
	 *			    some error indicators : 
	 *	    \li \c diff(0)  : Relative change in the enthalpy field
	 *			      between two successive steps 
	 *	    \li \c diff(1)  : Relative error in the resolution of the
	 *			    Poisson equation for \c nuf    
	 *	    \li \c diff(2)  : Relative error in the resolution of the
	 *			    Poisson equation for \c nuq    
	 *	    \li \c diff(3)  : Relative error in the resolution of the
	 *			    Poisson equation for \c dzeta    
	 *	    \li \c diff(4)  : Relative error in the resolution of the
	 *			    Poisson equation for \c tggg    
	 *	    \li \c diff(5)  : Relative error in the resolution of the
	 *			    equation for \c shift  (x comp.)   
	 *	    \li \c diff(6)  : Relative error in the resolution of the
	 *			    equation for \c shift  (y comp.)   
	 */
	virtual void equilibrium(double ent_c, double omega0, double fact_omega, 
			 int nzadapt, const Tbl& ent_limit,
			 const Itbl& icontrol, const Tbl& control,
			 double mbar_wanted, double aexp_mass, 
			 Tbl& diff, Param* = 0x0) ;
	

};

}
#endif