This file is indexed.

/usr/include/lorene/C++/Include/sym_tensor.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
/*
 *  Definition of Lorene class Sym_tensor, 
 *  as well as derived classes Sym_tensor_trans and Sym_tensor_tt
 *
 */

/*
 *   Copyright (c) 2003-2004 Eric Gourgoulhon & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef __SYM_TENSOR_H_ 
#define __SYM_TENSOR_H_ 

/*
 * $Id: sym_tensor.h,v 1.49 2014/10/13 08:52:36 j_novak Exp $
 * $Log: sym_tensor.h,v $
 * Revision 1.49  2014/10/13 08:52:36  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.48  2010/10/11 10:23:03  j_novak
 * Removed methods Sym_tensor_trans::solve_hrr() and Sym_tensor_trans::set_WX_det_one(), as they are no longer relevant.
 *
 * Revision 1.47  2008/12/05 08:46:19  j_novak
 * New method Sym_tensor_trans_aux::set_tt_part_det_one.
 *
 * Revision 1.46  2008/12/03 10:18:56  j_novak
 * Method 6 is now the default for calls to vector Poisson solver.
 *
 * Revision 1.45  2008/08/20 14:39:53  n_vasset
 * New Dirac solvers handling degenerate elliptic operators on excised spacetimes.
 *
 * Revision 1.44  2007/12/21 16:06:16  j_novak
 * Methods to filter Tensor, Vector and Sym_tensor objects.
 *
 * Revision 1.43  2007/11/27 15:48:52  n_vasset
 * New member p_tilde_c for class Sym_tensor
 *
 * Revision 1.42  2007/05/04 16:43:50  n_vasset
 * adding of functions sol_Dirac_BC2 and sol_Dirac_A2
 *
 * Revision 1.41  2006/10/24 13:03:17  j_novak
 * New methods for the solution of the tensor wave equation. Perhaps, first
 * operational version...
 *
 * Revision 1.40  2006/08/31 12:13:21  j_novak
 * Added an argument of type Param to Sym_tensor_trans::sol_  rac_A().
 *
 * Revision 1.39  2006/06/20 12:07:13  j_novak
 * Improved execution speed for sol_Dirac_tildeB...
 *
 * Revision 1.38  2006/06/14 10:04:19  j_novak
 * New methods sol_Dirac_l01, set_AtB_det_one and set_AtB_trace_zero.
 *
 * Revision 1.37  2006/06/13 13:30:12  j_novak
 * New members sol_Dirac_A and sol_Dirac_tildeB (see documentation).
 *
 * Revision 1.36  2006/06/12 13:37:23  j_novak
 * Added bounds in l (multipolar momentum) for Sym_tensor_trans::solve_hrr.
 *
 * Revision 1.35  2006/06/12 07:42:28  j_novak
 * Fields A and tilde{B} are defined only for l>1.
 *
 * Revision 1.34  2006/06/12 07:27:18  j_novak
 * New members concerning A and tilde{B}, dealing with the transverse part of the
 * Sym_tensor.
 *
 * Revision 1.33  2005/11/28 14:45:14  j_novak
 * Improved solution of the Poisson tensor equation in the case of a transverse
 * tensor.
 *
 * Revision 1.32  2005/09/16 13:58:10  j_novak
 * New Poisson solver for a Sym_tensor_trans.
 *
 * Revision 1.31  2005/09/07 16:47:42  j_novak
 * Removed method Sym_tensor_trans::T_from_det_one
 * Modified Sym_tensor::set_auxiliary, so that it takes eta/r and mu/r as
 * arguments.
 * Modified Sym_tensor_trans::set_hrr_mu.
 * Added new protected method Sym_tensor_trans::solve_hrr
 *
 * Revision 1.30  2005/04/08 08:22:04  j_novak
 * New methods set_hrr_mu_det_one() and set_WX_det_one(). Not tested yet...
 *
 * Revision 1.29  2005/04/06 15:43:58  j_novak
 * New method Sym_tensor_trans::T_from_det_one(...).
 *
 * Revision 1.28  2005/04/04 15:25:22  j_novak
 * Added new members www, xxx, ttt and the associated methods.
 *
 * Revision 1.27  2005/04/01 14:28:31  j_novak
 * Members p_eta and p_mu are now defined in class Sym_tensor.
 *
 * Revision 1.26  2005/01/03 08:34:58  f_limousin
 * Come back to the previous version.
 *
 * Revision 1.25  2005/01/03 08:15:39  f_limousin
 * The first argument of the function trace_from_det_one(...) is now
 * a Sym_tensor_trans instead of a Sym_tensor_tt (because of a
 * compilation error with some compilators).
 *
 * Revision 1.24  2004/12/28 14:21:46  j_novak
 * Added the method Sym_tensor_trans::trace_from_det_one
 *
 * Revision 1.23  2004/12/28 10:37:22  j_novak
 * Better way of enforcing zero divergence.
 *
 * Revision 1.22  2004/06/14 20:44:44  e_gourgoulhon
 * Added argument method_poisson to Sym_tensor::longit_pot and
 * Sym_tensor::transverse.
 *
 * Revision 1.21  2004/05/25 14:57:20  f_limousin
 * Add parameters in argument of functions transverse, longit_pot,
 * set_tt_trace, tt_part and set_khi_mu for the case of a Map_et.
 *
 * Revision 1.20  2004/05/24 13:44:54  e_gourgoulhon
 * Added parameter dzp to method Sym_tensor_tt::update.
 *
 * Revision 1.19  2004/04/08 16:37:54  e_gourgoulhon
 * Sym_tensor_tt::set_khi_mu: added argument dzp (dzpuis of resulting h^{ij}).
 *
 * Revision 1.18  2004/03/30 14:01:19  j_novak
 * Copy constructors and operator= now copy the "derived" members.
 *
 * Revision 1.17  2004/03/29 16:13:06  j_novak
 * New methods set_longit_trans and set_tt_trace .
 *
 * Revision 1.16  2004/03/22 13:12:43  j_novak
 * Modification of comments to use doxygen instead of doc++
 *
 * Revision 1.15  2004/03/03 13:54:16  j_novak
 * Error in comments corrected.
 *
 * Revision 1.14  2004/03/03 13:16:20  j_novak
 * New potential khi (p_khi) and the functions manipulating it.
 *
 * Revision 1.13  2004/02/26 22:45:13  e_gourgoulhon
 * Added method derive_lie.
 *
 * Revision 1.12  2004/02/18 18:43:22  e_gourgoulhon
 * Method trace() renamed the_trace() in order to avoid
 * any confusion with new method Tensor::trace().
 *
 * Revision 1.11  2004/01/04 20:49:06  e_gourgoulhon
 * Sym_tensor is now a derived class of Tensor_sym.
 * Suppressed methods Sym_tensor::indices and Sym_tensor::position:
 *  they are now implemented at the Tensor_sym level.
 *
 * Revision 1.10  2003/11/27 16:05:11  e_gourgoulhon
 * Changed return value of methods transverse( ) and longit_pot( ).
 *
 * Revision 1.9  2003/11/26 21:56:21  e_gourgoulhon
 * Class Sym_tensor: added the members p_transverse and p_longit_pot,
 * and the associated methods transverse( ), longit_pot( ),
 * del_deriv_met( ) and set_der_met_0x0( ).
 *
 * Revision 1.8  2003/11/07 16:54:23  e_gourgoulhon
 * Added method Sym_tensor_tt::poisson().
 *
 * Revision 1.7  2003/11/06 14:43:37  e_gourgoulhon
 * Gave a name to const arguments in certain method prototypes (e.g.
 * constructors) to correct a bug of DOC++.
 *
 * Revision 1.6  2003/11/05 15:26:31  e_gourgoulhon
 * Modif documentation.
 *
 * Revision 1.5  2003/11/04 22:57:26  e_gourgoulhon
 * Class Sym_tensor_tt: method set_eta_mu renamed set_rr_eta_mu
 *    method update_tp() renamed update()
 *    added method set_rr_mu.
 *
 * Revision 1.4  2003/11/03 22:29:54  e_gourgoulhon
 * Class Sym_tensor_tt: added functions set_eta_mu and update_tp.
 *
 * Revision 1.3  2003/11/03 17:09:30  e_gourgoulhon
 * Class Sym_tensor_tt: added the methods eta() and mu().
 *
 * Revision 1.2  2003/10/28 21:22:51  e_gourgoulhon
 * Class Sym_tensor_trans: added methods trace() and tt_part().
 *
 * Revision 1.1  2003/10/27 10:45:19  e_gourgoulhon
 * New derived classes Sym_tensor_trans and Sym_tensor_tt.
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/sym_tensor.h,v 1.49 2014/10/13 08:52:36 j_novak Exp $
 *
 */

namespace Lorene {
class Sym_tensor_trans ;
class Sym_tensor_tt ;




			//---------------------------------//
			//        class Sym_tensor         //
			//---------------------------------//
			
/**
 * Class intended to describe valence-2 symmetric tensors.
 * The storage and the calculations are different and quicker than with an 
 * usual \c Tensor .
 * 
 * The valence must be 2. \ingroup (tensor)
 *
 */
class Sym_tensor : public Tensor_sym {

    // Derived data : 
    // ------------
    protected:
	/** Array of the transverse part \f${}^t T^{ij}\f$ of the tensor with respect 
	 * to various metrics, transverse meaning divergence-free with respect
	 * to a metric. Denoting \c *this  by \f$T^{ij}\f$, we then have
	 * \f[
	 *		T^{ij} = {}^t T^{ij} + \nabla^i W^j + \nabla^j W^i  
	 *		\qquad\mbox{with}\quad \nabla_j {}^t T^{ij} = 0 
	 *\f]
	 * where \f$\nabla_i\f$ denotes the covariant derivative with respect
	 * to the given metric and \f$W^i\f$ is the vector potential of the
	 * longitudinal part of \f$T^{ij}\f$ (member \c p_longit_pot  below)
	 */
	mutable Sym_tensor_trans* p_transverse[N_MET_MAX] ;

	/** Array of the vector potential of the
	 * longitudinal part of the tensor with respect 
	 * to various metrics (see documentation of member 
	 * \c p_transverse 
	 */
	mutable Vector* p_longit_pot[N_MET_MAX] ;

	/** Field \f$\eta\f$ such that the components \f$(T^{r\theta}, T^{r\varphi})\f$
	 * of the tensor are written (has only meaning with spherical components!):
	 * \f[
	 *	T^{r\theta} =  {1\over r} \left( {\partial \eta \over \partial\theta} -
	 *	{1\over\sin\theta} {\partial \mu \over \partial\varphi} \right) 
	 *\f] 
	 * \f[
	 *	T^{r\varphi} =  {1\over r} \left( {1\over\sin\theta} 
	 *				{\partial \eta \over \partial\varphi}
	 *				+ {\partial \mu \over \partial\theta} \right)
	 *\f] 
	 */
	mutable Scalar* p_eta ;
	
	/** Field \f$\mu\f$ such that the components \f$(T^{r\theta}, T^{r\varphi})\f$
	 * of the tensor are written (has only meaning with spherical components!):
	 * \f[
	 *	T^{r\theta} =  {1\over r} \left( {\partial \eta \over \partial\theta} -
	 *	 {1\over\sin\theta} {\partial \mu \over \partial\varphi} \right) 
	 *\f] 
	 * \f[
	 *	T^{r\varphi} =  {1\over r} \left( {1\over\sin\theta} 
	 *				{\partial \eta \over \partial\varphi}
	 *				+ {\partial \mu \over \partial\theta} \right)
	 *\f] 
	 */
	mutable Scalar* p_mu ;

	/** Field \e W such that the components \f$T^{\theta\theta}, 
	 * T^{\varphi\varphi}\f$ and \f$T^{\theta\varphi}\f$
	 * of the tensor are written (has only meaning with spherical components!):
	 * \f[
	 * \frac{1}{2}\left(T^{\theta\theta} - T^{\varphi\varphi} \right) 
	 * = \frac{\partial^2 W}{\partial\theta^2} - \frac{1}{\tan
	 * \theta} \frac{\partial W}{\partial \theta} - \frac{1}{\sin^2 \theta} 
	 * \frac{\partial^2 W}{\partial \varphi^2} - 2\frac{\partial}{\partial \theta} 
	 * \left( \frac{1}{\sin \theta} \frac{\partial X}{\partial \varphi} \right) ,
	 *\f] 
	 * \f[
	 *  T^{\theta\varphi} = \frac{\partial^2 X}{\partial\theta^2} - \frac{1}{\tan
	 * \theta} \frac{\partial X}{\partial \theta} - \frac{1}{\sin^2 \theta} 
	 * \frac{\partial^2 X}{\partial \varphi^2} + 2\frac{\partial}{\partial \theta} 
	 * \left( \frac{1}{\sin \theta} \frac{\partial W}{\partial \varphi} \right) .
	 *\f] 
	 */
	mutable Scalar* p_www ;

	/** Field \e X such that the components \f$T^{\theta\theta}, 
	 * T^{\varphi\varphi}\f$ and \f$T^{\theta\varphi}\f$
	 * of the tensor are written (has only meaning with spherical components!):
	 * \f[
	 * \frac{1}{2}\left(T^{\theta\theta} - T^{\varphi\varphi} \right) 
	 * = \frac{\partial^2 W}{\partial\theta^2} - \frac{1}{\tan
	 * \theta} \frac{\partial W}{\partial \theta} - \frac{1}{\sin^2 \theta} 
	 * \frac{\partial^2 W}{\partial \varphi^2} - 2\frac{\partial}{\partial \theta} 
	 * \left( \frac{1}{\sin \theta} \frac{\partial X}{\partial \varphi} \right) ,
	 *\f] 
	 * \f[
	 *  T^{\theta\varphi} = \frac{\partial^2 X}{\partial\theta^2} - \frac{1}{\tan
	 * \theta} \frac{\partial X}{\partial \theta} - \frac{1}{\sin^2 \theta} 
	 * \frac{\partial^2 X}{\partial \varphi^2} + 2\frac{\partial}{\partial \theta} 
	 * \left( \frac{1}{\sin \theta} \frac{\partial W}{\partial \varphi} \right) .
	 *\f] 
	 */
	mutable Scalar* p_xxx ;

	/// Field \e T defined as \f$ T = T^{\theta\theta} + T^{\varphi\varphi} \f$.
	mutable Scalar* p_ttt ;

	/** Field \e A defined from \e X and \f$\mu\f$ insensitive to the 
	 * longitudinal part of the \c Sym_tensor (only for \f$\ell \geq 2\f$).
	 * Its definition reads \f[
	 * A = \frac{\partial X}{\partial r} - \frac{\mu}{r^2}.
	 * \f] */
	mutable Scalar* p_aaa ;

	/** Field \f$ \tilde{B}\f$ defined from \f$ h^{rr}, \eta, W\f$ and \e h
	 * insensitive to the longitudinal part of the \c Sym_tensor.
	 * It is defined for each multipolar momentum \f$\ell \geq 2\f$ by
	 * \f[ 
	 * \tilde{B} = (\ell + 2) \frac{\partial W}{\partial r} + \ell(\ell + 2)
	 * \frac{W}{r} - \frac{2\eta}{r^2} + \frac{(\ell +2)T}{2r(\ell + 1)}
	 * + \frac{1}{2(\ell + 1)} \frac{\partial T}{\partial r} - \frac{h^{rr}}
	 * {(\ell + 1)r}.
	 * \f]
	 */
	mutable Scalar* p_tilde_b ;

	/** Field \f$ \tilde{C}\f$ defined from \f$ h^{rr}, \eta, W\f$ and \e h
	 * insensitive to the longitudinal part of the \c Sym_tensor.
	 * It is defined for each multipolar momentum \f$\ell \geq 2\f$ by
	 * \f[ 
	 * \tilde{C} = - (\ell - 1) \frac{\partial W}{\partial r} + (\ell + 1)(\ell - 1)
	 * \frac{W}{r} - \frac{2\eta}{r^2} + \frac{(\ell - 1)T}{2r\ell}
	 * - \frac{1}{2 \ell } \frac{\partial T}{\partial r} - \frac{h^{rr}}
	 * {\ell r}.
	 * \f]
	 */
	mutable Scalar* p_tilde_c ;


     



    // Constructors - Destructor :
    // -------------------------
	
    public:
	/** Standard constructor.
	 * 
	 * @param map   the mapping 
	 * @param tipe  1-D array of integers (class \c Itbl ) of size 2 
	 *		containing the type 
	 *		of each index, \c COV  for a covariant one 
	 *		and \c CON  for a contravariant one,  with the 
	 *		following storage convention: 
	 *			\li \c tipe(0)  : type of the first index 
	 *			\li \c tipe(1)  : type of the second index 
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined
	 */
	Sym_tensor(const Map& map, const Itbl& tipe, const Base_vect& triad_i) ;

	/** Standard constructor when both indices are of the same type.
	 * 
	 * @param map   the mapping 
	 * @param tipe  the type of the indices.
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined
	 * 
	 */
	Sym_tensor(const Map& map, int tipe, const Base_vect& triad_i) ;

	Sym_tensor(const Sym_tensor& a) ; ///< Copy constructor

	/** Constructor from a \c Tensor .
	 *  The symmetry of the input tensor is assumed but is not checked.
	 */
	Sym_tensor(const Tensor& a) ;
	
	/** Constructor from a file (see \c sauve(FILE*) ).
	 * 
	 * @param map  the mapping
	 * @param triad_i   vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined. It will
	 *			  be checked that it coincides with the basis
	 *			  saved in the file.
	 * @param fich  file which has been used by 
	 *			    the function \c sauve(FILE*) .
	 */
	Sym_tensor(const Map& map, const Base_vect& triad_i, FILE* fich) ;

	virtual ~Sym_tensor() ;    ///< Destructor

      

    // Memory management
    // -----------------
    protected:
	virtual void del_deriv() const;	///< Deletes the derived quantities

	/// Sets the pointers on derived quantities to 0x0
	void set_der_0x0() const ; 

	/** Logical destructor of the derivatives depending on the i-th
	 *  element of \c met_depend  specific to the
	 *  class \c Sym_tensor  (\c p_transverse , etc...).
	 */	
	virtual void del_derive_met(int i) const ;

	/** Sets all the i-th components of \c met_depend  specific to the
	 * class \c Sym_tensor  (\c p_transverse , etc...) to 0x0.
	 */
	void set_der_met_0x0(int i) const ;


    // Mutators / assignment
    // ---------------------
    public:
	/// Assignment to another \c Sym_tensor 
	virtual void operator=(const Sym_tensor& a) ;

	/// Assignment to a \c Tensor_sym 
	virtual void operator=(const Tensor_sym& a) ;

	/**
	 * Assignment to a \c Tensor .
	 * 
	 * The symmetry is assumed but not checked.
	 */
	virtual void operator=(const Tensor& a) ;

	/**
	 * Assigns the derived members \c p_longit_pot and \c p_transverse
	 *  and updates the components accordingly.
	 * (see the documentation of these derived members for details)
	 */
	void set_longit_trans( const Vector& v, const Sym_tensor_trans& a) ;

	/** 
	 * Assigns the component \f$ T^{rr} \f$ and the derived members 
	 * \c p_eta , \c p_mu , \c p_www, \c p_xxx and \c p_ttt ,
	 * fro, their values and \f$ \eta / r\f$, \f$\mu / r \f$.
	 * It updates the other components accordingly.
	 */
	void set_auxiliary( const Scalar& trr, const Scalar& eta_over_r, const
			    Scalar& mu_over_r, const Scalar& www, const Scalar&
			    xxx, const Scalar& ttt ) ;

	/** Applies exponential filters to all components 
	 * (see \c Scalar::exponential_filter_r ). Does a loop for Cartesian 
	 * components, and works in terms of the rr-component, \f$\eta\f$,
	 * \f$\mu\f$, \c W, \c X, \c T for spherical components.
	 */
	virtual void  exponential_filter_r(int lzmin, int lzmax, int p, 
			    double alpha= -16.) ;

	/** Applies exponential filters to all components 
	 * (see \c Scalar::exponential_filter_ylm ). Does a loop for Cartesian 
	 * components, and works in terms of the r-component, \f$\eta\f$,
	 * \f$\mu\f$, \c W, \c X, \c T for spherical components. 
	 */
	virtual void exponential_filter_ylm(int lzmin, int lzmax, int p, 
			    double alpha= -16.) ;

    // Computation of derived members
    // ------------------------------
    public:


	/**Returns the divergence of \c this  with respect to a \c Metric .
	 * The indices are assumed to be contravariant.
	 */
	const Vector& divergence(const Metric&) const ; 

        /** Computes the Lie derivative of \c this  with respect to some
         *  vector field \c v 
         */
        Sym_tensor derive_lie(const Vector& v) const ; 

	/** Computes the transverse part \f${}^t T^{ij}\f$ of the tensor with respect 
	 * to a given metric, transverse meaning divergence-free with respect
	 * to that metric. Denoting \c *this  by \f$T^{ij}\f$, we then have
	 * \f[
	 *		T^{ij} = {}^t T^{ij} + \nabla^i W^j + \nabla^j W^i  
	 *		\qquad\mbox{with}\quad \nabla_j {}^t T^{ij} = 0 
	 *\f]
	 * where \f$\nabla_i\f$ denotes the covariant derivative with respect
	 * to the given metric and \f$W^i\f$ is the vector potential of the
	 * longitudinal part of \f$T^{ij}\f$ (function \c longit_pot()  below)
         * @param gam metric with respect to the transverse decomposition 
         *      is performed
         * @param par parameters for the vector Poisson equation
         * @param method_poisson type of method for solving the vector
         *      Poisson equation to get the longitudinal part (see 
         *      method \c Vector::poisson)
	 */
	const Sym_tensor_trans& transverse(const Metric& gam, Param* par = 0x0,
                int method_poisson = 6) const ; 

	/** Computes the vector potential \f$W^i\f$ of
	 * longitudinal part of the tensor (see documentation of
	 * method \c transverse() above).
         * @param gam metric with respect to the transverse decomposition 
         *      is performed
         * @param par parameters for the vector Poisson equation
         * @param method_poisson type of method for solving the vector
         *      Poisson equation to get the longitudinal part (see 
         *      method \c Vector::poisson)
	 */
	const Vector& longit_pot(const Metric& gam, Param* par = 0x0,
                int method_poisson = 6) const ; 
	
	/// Gives the field \f$\eta\f$ (see member \c p_eta ).
	virtual const Scalar& eta(Param* par = 0x0) const ;

	/// Gives the field \f$\mu\f$ (see member \c p_mu ).
	const Scalar& mu(Param* par = 0x0) const ;

	/// Gives the field \e W (see member \c p_www ).
	const Scalar& www() const ;

	/// Gives the field \e X (see member \c p_xxx ).
	const Scalar& xxx() const ;

	/// Gives the field \e T (see member \c p_ttt ).
	const Scalar& ttt() const ;

	/** Gives the field \e A (see member \c p_aaa ).
	 * @param output_ylm a flag to control the spectral decomposition 
	 * base of the result: if true (default) the spherical harmonics base 
	 * is used.
	 */
	const Scalar& compute_A(bool output_ylm = true, Param* par = 0x0) const ;

	/** Gives the field \f$\tilde{B}\f$ (see member \c p_tilde_b ).
	 * @param output_ylm a flag to control the spectral decomposition 
	 * base of the result: if true (default) the spherical harmonics base 
	 * is used.
	 */
	const Scalar& compute_tilde_B(bool output_ylm = true, Param* par = 0x0) const ;

	/** Gives the field \f$\tilde{B}\f$ (see member \c p_tilde_b )
	 * associated with the TT-part of the \c Sym_tensor .
	 * @param output_ylm a flag to control the spectral decomposition 
	 * base of the result: if true (default) the spherical harmonics base 
	 * is used.
	 */
	Scalar compute_tilde_B_tt(bool output_ylm = true, Param* par = 0x0) const ;

	/** Gives the field \f$\tilde{C}\f$ (see member \c p_tilde_c ).
	 * @param output_ylm a flag to control the spectral decomposition 
	 * base of the result: if true (default) the spherical harmonics base 
	 * is used.
	 */
	const Scalar& compute_tilde_C(bool output_ylm = true, Param* par = 0x0) const ;





 protected:
	/** Computes \f$\tilde{B}\f$ (see \c Sym_tensor::p_tilde_b ) from its
	 * transverse-traceless part and the trace.
	 */
	Scalar get_tilde_B_from_TT_trace(const Scalar& tilde_B_tt_in, const Scalar&
	    trace) const ;
	
    // Mathematical operators
    // ----------------------
 protected:
	/**
	 * Returns a pointer on the inverse of the \c Sym_tensor  
	 * (seen as a matrix).
	 */
	Sym_tensor* inverse() const ;

    // Friend classes
    //-----------------
	friend class Metric ;
 
} ;


			//---------------------------------//
			//    class Sym_tensor_trans       //
			//---------------------------------//
			

/**
 * Transverse symmetric tensors of rank 2. \ingroup (tensor)
 *
 * This class is designed to store transverse (divergence-free) 
 * symmetric contravariant tensors of rank 2,
 * with the component expressed in an orthonormal spherical basis
 * \f$(e_r,e_\theta,e_\varphi)\f$.
 *
 * 
 */
class Sym_tensor_trans: public Sym_tensor {

    // Data : 
    // -----
    protected:
	/// Metric with respect to which the divergence and the trace are defined
	const Metric* const met_div ; 
	
	/// Trace with respect to the metric \c *met_div  
	mutable Scalar* p_trace ; 
	
	/// Traceless part with respect to the metric \c *met_div  
	mutable Sym_tensor_tt* p_tt ;
	
    // Constructors - Destructor
    // -------------------------
    public:
	/** Standard constructor.
	 * 
	 * @param map   the mapping 
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *		    the tensor components are defined 
	 * @param met the metric with respect to which the divergence is defined
	 */
	Sym_tensor_trans(const Map& map, const Base_vect& triad_i, 
		const Metric& met) ;

	Sym_tensor_trans(const Sym_tensor_trans& ) ;       ///< Copy constructor

	/** Constructor from a file (see \c Tensor::sauve(FILE*) ).
	 * 
	 * @param map  the mapping
	 * @param triad_i   vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined. It will
	 *			  be checked that it coincides with the basis
	 *			  saved in the file.
	 * @param met the metric with respect to which the divergence is defined
	 * @param fich  file which has been used by 
	 *			    the function \c sauve(FILE*) .
	 */
	Sym_tensor_trans(const Map& map, const Base_vect& triad_i, 
		const Metric& met, FILE* fich) ;

	virtual ~Sym_tensor_trans() ;			///< Destructor

 
    // Memory management
    // -----------------
    protected:
	virtual void del_deriv() const;	///< Deletes the derived quantities

	/// Sets the pointers on derived quantities to 0x0
	void set_der_0x0() const ; 


    // Accessors
    // ---------
        public:
	/** Returns the metric with respect to which the divergence 
	 *  and the trace are defined.
	 */
	const Metric& get_met_div() const {return *met_div ; } ;

    // Mutators / assignment
    // ---------------------

	public:
	/// Assignment to another \c Sym_tensor_trans 
	virtual void operator=(const Sym_tensor_trans& a) ;	
	
	/// Assignment to a \c Sym_tensor 
	virtual void operator=(const Sym_tensor& a) ;	
	
	/// Assignment to a \c Tensor_sym 
	virtual void operator=(const Tensor_sym& a) ;

	/// Assignment to a \c Tensor 
	virtual void operator=(const Tensor& a) ;	
	
	/**
	 * Assigns the derived members \c p_tt and \c p_trace
	 *  and updates the components accordingly.
	 * (see the documentation of these derived members for details)
	 */
	void set_tt_trace(const Sym_tensor_tt& a, const Scalar& h, 
			  Param* par = 0x0) ;

	// Computational methods
	// ---------------------
	/// Returns the trace of the tensor with respect to metric \c *met_div 
	const Scalar& the_trace() const ; 
	
	/** Returns the transverse traceless part of the tensor, 
	 * the trace being defined
	 * with respect to metric \c *met_div 
	 */
	const Sym_tensor_tt& tt_part(Param* par = 0x0) const ; 

 protected:
	/** Solves a system of two coupled first-order PDEs obtained from 
	 * the divergence-free condition (Dirac gauge) and the requirement that
	 * the potential \e A (see \c Sym_tensor::p_aaa ) has a given value.
	 * The system reads: \f{eqnarray*}
	 * \frac{\partial \tilde{\mu}}{\partial r}  + \frac{3\tilde{\mu}}{r} + \left( 
	 * \Delta_{\theta\varphi } + 2\right) X &=& 0;\\
	 * \frac{\partial X}{\partial r} - \frac{\tilde{\mu}}{r} &=& A. \f}
	 * Note that this is solved only for \f$\ell \geq 2\f$ and that 
	 * \f$\tilde{\mu} = \mu / r\f$ (see \c Sym_tensor::p_mu ).
	 *
	 * @param aaa [input] the source \e A
	 * @param tilde_mu [output] the solution \f$\tilde{\mu}\f$
	 * @param xxx [output] the solution \e X
	 * @param par_bc [input] \c Param to control the boundary conditions
	 */
	void sol_Dirac_A(const Scalar& aaa, Scalar& tilde_mu, Scalar& xxx,
			 const Param* par_bc = 0x0) const ;


	/** Solves a system of three coupled first-order PDEs obtained from 
	 * divergence-free conditions (Dirac gauge) and the requirement that
	 * the potential \f$\tilde{B}\f$ (see \c Sym_tensor::p_tilde_b ) has 
	 * a given value. The system reads: \f{eqnarray*}
	 * \frac{\partial T^{rr}}{r} + \frac{3T^{rr}}{r} +\frac{1}{r}
	 *  \Delta_{\theta\varphi } \tilde{\eta} &=& \frac{h}{r};\\
	 * \frac{\partial \tilde{\eta}}{\partial r} + \frac{3\tilde{\eta}}{r} -
	 * \frac{T^{rr}}{2r} + \left( \Delta_{\theta\varphi } + 2\right) 
	 * \frac{W}{r} &=& -\frac{h}{2r};\\
	 * (\ell + 2) \frac{\partial W}{\partial r} + \ell(\ell + 2)
	 * \frac{W}{r} - \frac{2\tilde{\eta}}{r} + \frac{(\ell +2)T}{2r(\ell + 1)}
	 * + \frac{1}{2(\ell + 1)} \frac{\partial T}{\partial r} - \frac{T^{rr}}
	 * {(\ell + 1)r} &=& \tilde{B} - \frac{1}{2(\ell +1)} \frac{\partial h}
	 * {\partial r} - \frac{\ell +2}{\ell +1} \frac{h}{2r}.\f}
	 * Note that \f$\tilde{\eta} = \eta / r\f$ (for definitions, see derived
	 * members of \c Sym_tensor).
	 *
	 * @param tilde_b [input] the source \f$\tilde{B}\f$
	 * @param hh [input] the trace of the tensor
	 * @param hrr [output] the \e rr component of the result
	 * @param tilde_eta [output] the solution \f$\tilde{\eta}\f$
	 * @param www [output] the solution \e W
	 * @param par_bc [input] \c Param to control the boundary conditions
	 * @param par_mat [input/output] \c Param in which the operator matrix is
	 *                stored.
	 */
	void sol_Dirac_tilde_B(const Scalar& tilde_b, const Scalar& hh, Scalar& hrr,
			       Scalar& tilde_eta, Scalar& www, Param* par_bc=0x0,
			       Param* par_mat=0x0) const ;

	/** Solves the same system as \c Sym_tensor_trans::sol_Dirac_tilde_B
	 * but only for \f$\ell=0,1\f$. In these particular cases, \e W =0
	 * the system is simpler and homogeneous solutions are different.
	 */
	void sol_Dirac_l01(const Scalar& hh, Scalar& hrr, Scalar& tilde_eta,
			   Param* par_mat) const ;



 public:


        
	/** Same resolution as sol_Dirac_A, but with inner boundary conditions added. 
	 *For now, only Robyn-type boundary conditions on \f$\frac {\mu}  {r} \f$ can be imposed.
	 */


	void sol_Dirac_Abound(const Scalar& aaa, Scalar& tilde_mu, Scalar& x_new,
		 	  Scalar bound_mu, const Param* par_bc);
 
        
	/** Same resolution as sol_Dirac_Abound, but here the boundary conditions
	 * are the degenerate elliptic conditions encontered when solving the
	 * Kerr problem.
	 */


	void sol_Dirac_A2(const Scalar& aaa, Scalar& tilde_mu, Scalar& x_new,
		 	  Scalar bound_mu, const Param* par_bc);       

	/** Same resolution as sol_Dirac_tilde_B, but with inner boundary conditions added.
         *  The difference is here, one has to put B and C values in (and not only  \f$\tilde{B}\f$).
         * For now, only Robyn-type boundary conditions on \f$ h^{rr} \f$ can be imposed.
	 */

 	void sol_Dirac_BC2(const Scalar& bb, const Scalar& cc, const Scalar& hh, 
	 			Scalar& hrr, Scalar& tilde_eta, Scalar& ww, Scalar bound_eta,double dir, double neum, double rhor, Param* par_bc, Param* par_mat); 
 

	/** Same resolution as sol_Dirac_Abound, but here the boundary conditions
	 * are the degenerate elliptic conditions encontered when solving the
	 * Kerr problem.
	 */

 	void sol_Dirac_BC3(const Scalar& bb, const Scalar& hh, 
	 			Scalar& hrr, Scalar& tilde_eta, Scalar& ww, Scalar bound_hrr, Scalar bound_eta, Param* par_bc, Param* par_mat); 



	 // Solving the electric system for l=0 and l=1 only (simpler case), with boundary conditions imposed by the degenerate elliptic system.
   
 	void sol_Dirac_l01_bound(const Scalar& hh, Scalar& hrr, Scalar& tilde_eta, Scalar& bound_hrr, Scalar& bound_eta, Param* par_mat) ;

	// Provisory: just for compilation, to be removed
 	void sol_Dirac_l01_2(const Scalar& hh, Scalar& hrr, Scalar& tilde_eta, Param* par_mat) ;


        /** Finds spectral potentials A, B, C of solution of an tensorial TT elliptic equation, 
	 *  given the source. 
	 **/
 
	void sol_elliptic_ABC(Sym_tensor& source, Scalar aaa, Scalar bbb, Scalar ccc) ;



	/** Assigns the derived member \c p_tt and computes the trace so that 
	 * \c *this + the flat metric has a determinant equal to 1. It then
	 * updates the components accordingly, with a \c dzpuis = 2. 
	 * This function makes an 
	 * iteration until the relative difference in the trace between 
	 * two steps is lower than \c precis . 
	 *
	 * @param htt the transverse traceless part; all components must have
	 *            dzpuis = 2.
	 * @param precis relative difference in the trace computation to end
	 *               the iteration.
	 * @param it_max maximal number of iterations.
	 */
	void trace_from_det_one(const Sym_tensor_tt& htt, 
				double precis = 1.e-14, int it_max = 100) ;

	/** Assigns the \e rr component and the derived member \f$\mu\f$.
	 * Other derived members are deduced from the divergence-free 
	 * condition. Finally, it computes \c T (\c Sym_tensor::p_ttt )  so that 
	 * \c *this + the flat metric has a determinant equal to 1. It then
	 * updates the components accordingly. This function makes an 
	 * iteration until the relative difference in \c T between 
	 * two steps is lower than \c precis . 
	 *
	 * @param hrr the \e rr component of the tensor,
	 * @param mu_in the \f$\mu\f$ potential,
	 * @param precis relative difference in the trace computation to end
	 *               the iteration.
	 * @param it_max maximal number of iterations.
	 */
	void set_hrr_mu_det_one(const Scalar& hrr, const Scalar& mu_in,
				double precis = 1.e-14, int it_max = 100) ;

	/** Assignes the TT-part of the tensor.
	 * The trace is deduced from the divergence-free condition, through the 
	 * Dirac system on \f$ \tilde{B} \f$, so that 
	 * \c *this + the flat metric has a determinant equal to 1. It then
	 * updates the components accordingly. This function makes an 
	 * iteration until the relative difference in the trace between 
	 * two steps is lower than \c precis . 
	 * @param hijtt  the TT part for \c this.
	 * @param h_prev a pointer on a guess for the trace of \c *this; if
	 *               null, then the iteration starts from 0.
	 * @param precis relative difference in the trace computation to end
	 *               the iteration.
	 * @param it_max maximal number of iterations.
	 */
	void set_tt_part_det_one(const Sym_tensor_tt& hijtt, const 
				 Scalar* h_prev = 0x0, Param* par_mat = 0x0, 
				 double precis = 1.e-14, int it_max = 100) ;

	/** Assigns the derived member \c A and computes \f$\tilde{B}\f$ 
	 * from its TT-part (see \c Sym_tensor::compute_tilde_B_tt() ).
	 * Other derived members are deduced from the divergence-free 
	 * condition. Finally, it computes the trace so that 
	 * \c *this + the flat metric has a determinant equal to 1. It then
	 * updates the components accordingly. This function makes an 
	 * iteration until the relative difference in the trace between 
	 * two steps is lower than \c precis . 
	 *
	 * @param a_in the \c A potential (see \c Sym_tensor::p_aaa )
	 * @param tbtt_in the TT-part of \f$\tilde{B}\f$ potential 
	 *   (see \c Sym_tensor::p_tilde_b and \c Sym_tensor::compute_tilde_B_tt() )
	 * @param h_prev a pointer on a guess for the trace of \c *this; if
	 *               null, then the iteration starts from 0.
	 * @param precis relative difference in the trace computation to end
	 *               the iteration.
	 * @param it_max maximal number of iterations.
	 */
	void set_AtBtt_det_one(const Scalar& a_in, const Scalar& tbtt_in, 
			       const Scalar* h_prev = 0x0, Param* par_bc = 0x0,
			       Param* par_mat = 0x0, double precis = 1.e-14, 
			       int it_max = 100) ;

	/** Assigns the derived members \c A , \f$\tilde{B}\f$ and the trace.
	 * Other derived members are deduced from the divergence-free condition.
	 *
	 * @param a_in the \c A potential (see \c Sym_tensor::p_aaa )
	 * @param tb_in the \f$\tilde{B}\f$ potential (see \c Sym_tensor::p_tilde_b )
	 * @param trace the trace of the \c Sym_tensor.
	 */
	void set_AtB_trace(const Scalar& a_in, const Scalar& tb_in, const 
			   Scalar& trace, Param* par_bc = 0x0, Param* par_mat = 0x0) ;

	/** Computes the solution of a tensorial transverse Poisson equation
	 *  with \c *this  \f$= S^{ij}\f$ as a source:
	 * \f[
	 *    \Delta h^{ij} = S^{ij}.
	 *\f] 
	 * In particular, it makes an iteration on the trace of the result, using
	 * \c Sym_tensor::set_WX_det_one.
	 * 
	 * @param h_guess a pointer on a guess for the trace of the result; it is
	 *                passed to \c Sym_tensor::set_WX_det_one.
	 * @return solution \f$h^{ij}\f$ of the above equation with the boundary
	 *	condition \f$h^{ij}=0\f$ at spatial infinity.
	 */
	Sym_tensor_trans poisson(const Scalar* h_guess = 0x0) const ; 
} ; 
	

			//------------------------------//
			//    class Sym_tensor_tt       //
			//------------------------------//
			

/**
 * Transverse and traceless symmetric tensors of rank 2.
 *
 * This class is designed to store transverse (divergence-free) 
 * and transverse symmetric contravariant tensors of rank 2,
 * with the component expressed in an orthonormal spherical basis
 * \f$(e_r,e_\theta,e_\varphi)\f$.\ingroup (tensor)
 *
 * 
 */
class Sym_tensor_tt: public Sym_tensor_trans {

    // Data : 
    // -----

    protected:
	/** Field \f$\chi\f$ such that the component \f$h^{rr} = \frac{\chi}{r^2}\f$.
	 */
	mutable Scalar* p_khi ;
	
	
    // Constructors - Destructor
    // -------------------------
    public:
	/** Standard constructor.
	 * 
	 * @param map   the mapping 
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *		    the tensor components are defined 
	 * @param met the metric with respect to which the divergence is defined
	 */
	Sym_tensor_tt(const Map& map, const Base_vect& triad_i, 
		const Metric& met) ;

	Sym_tensor_tt(const Sym_tensor_tt& ) ;       ///< Copy constructor

	/** Constructor from a file (see \c Tensor::sauve(FILE*) ).
	 * 
	 * @param map  the mapping
	 * @param triad_i   vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined. It will
	 *			  be checked that it coincides with the basis
	 *			  saved in the file.
	 * @param met the metric with respect to which the divergence is defined
	 * @param fich  file which has been used by 
	 *			    the function \c sauve(FILE*) .
	 */
	Sym_tensor_tt(const Map& map, const Base_vect& triad_i, 
		const Metric& met, FILE* fich) ;

	virtual ~Sym_tensor_tt() ;			///< Destructor

 
    // Memory management
    // -----------------
    protected:
	virtual void del_deriv() const;	///< Deletes the derived quantities

	/// Sets the pointers on derived quantities to 0x0
	void set_der_0x0() const ; 


    // Mutators / assignment
    // ---------------------

	public:
	/// Assignment to another \c Sym_tensor_tt 
	virtual void operator=(const Sym_tensor_tt& a) ;	
	
	/// Assignment to a \c Sym_tensor_trans 
	virtual void operator=(const Sym_tensor_trans& a) ;	
	
	/// Assignment to a \c Sym_tensor 
	virtual void operator=(const Sym_tensor& a) ;	
	
	/// Assignment to a \c Tensor_sym 
	virtual void operator=(const Tensor_sym& a) ;

	/// Assignment to a \c Tensor 
	virtual void operator=(const Tensor& a) ;	
	
	/** Sets the component \f$h^{rr}\f$, as well as the angular potentials 
	 * \f$\eta\f$ and \f$\mu\f$ (see members
	 *  \c p_eta  and \c p_mu ). 
	 *  The other components are updated consistently
	 *  by a call to the method \c update() .
	 *
	 *	@param hrr [input] value of \f$h^{rr}\f$
	 *	@param eta_i [input] angular potential \f$\eta\f$
	 *	@param mu_i [input] angular potential \f$\mu\f$
	 *
	 */
	void set_rr_eta_mu(const Scalar& hrr, const Scalar& eta_i, 
						const Scalar& mu_i) ; 

	/** Sets the component \f$h^{rr}\f$, as well as the angular potential
	 * \f$\mu\f$ (see member \c p_mu ). 
	 * The angular potential \f$\eta\f$ (member \c p_eta ) is deduced from
	 * the divergence free condition. 
	 * The other tensor components are updated consistently
	 * by a call to the method \c update() .
	 *
	 *	@param hrr [input] value of \f$h^{rr}\f$
	 *	@param mu_i [input] angular potential \f$\mu\f$
	 *
	 */
	void set_rr_mu(const Scalar& hrr, const Scalar& mu_i) ; 
	
	
	/** Sets the component \f$\chi\f$, as well as the angular potentials 
	 * \f$\eta\f$ and \f$\mu\f$ (see members \c p_khi ,
	 *  \c p_eta  and \c p_mu ). 
	 *  The components are updated consistently
	 *  by a call to the method \c update() .
	 *
	 *	@param khi_i [input] value of \f$\chi\f$
	 *	@param eta_i [input] angular potential \f$\eta\f$
	 *	@param mu_i [input] angular potential \f$\mu\f$
	 *
	 */
	void set_khi_eta_mu(const Scalar& khi_i, const Scalar& eta_i, 
						const Scalar& mu_i) ; 
		
	/** Sets the component \f$\chi\f$, as well as the angular potential
	 * \f$\mu\f$ (see member \c p_khi  and \c p_mu ). 
	 * The angular potential \f$\eta\f$ (member \c p_eta ) is deduced from
	 * the divergence free condition. 
	 * The tensor components are updated consistently
	 * by a call to the method \c update() .
	 *
	 *	@param khi_i [input] value of \f$\chi\f$
	 *	@param mu_i [input] angular potential \f$\mu\f$
         *      @param dzp [input] \c dzpuis parameter of the resulting
         *                      tensor components
	 *
	 */
	void set_khi_mu(const Scalar& khi_i, const Scalar& mu_i, int dzp = 0,
			Param* par1 = 0x0, Param* par2 = 0x0, 
			Param* par3 = 0x0) ; 

	/** Assigns the derived members \c A and \f$\tilde{B}\f$.
	 * Other derived members are deduced from the divergence-and trace-free 
	 * conditions.
	 *
	 * @param a_in the \c A potential (see \c Sym_tensor::p_aaa )
	 * @param tb_in the \f$\tilde{B}\f$ potential (see \c Sym_tensor::p_tilde_b )
	 */
	void set_A_tildeB(const Scalar& a_in, const Scalar& tb_in, Param* par_bc = 0x0,
			  Param* par_mat = 0x0) ;

	// Computational methods
	// ---------------------
	
	public:
	/** Gives the field \f$\chi\f$ such that the component 
	 * \f$h^{rr} = \frac{\chi}{r^2}\f$.
	 */
	const Scalar& khi() const ;
	
	/// Gives the field \f$\eta\f$ (see member \c p_eta ).
	virtual const Scalar& eta(Param* par = 0x0) const ;

	protected:
	/** Computes the components \f$h^{r\theta}\f$, \f$h^{r\varphi}\f$,
	 * \f$h^{\theta\theta}\f$, \f$h^{\theta\varphi}\f$ and \f$h^{\varphi\varphi}\f$,
	 *  from \f$h^{rr}\f$ and the potentials \f$\eta\f$ and \f$\mu\f$.
         *  @param dzp \c dzpuis parameter of the result, i.e. of the 
         *      components \f$ h^{ij} \f$.
	 */
	void update(int dzp, Param* par1 = 0x0, Param* par2 = 0x0) ;

	public:
	/** Computes the solution of a tensorial TT Poisson equation
	 *  with \c *this  \f$= S^{ij}\f$ as a source:
	 * \f[
	 *    \Delta h^{ij} = S^{ij}
	 *\f] 
	 * 
	 * @param dzfin [input] the \c dzpuis for all the components of the result 
	 *        (see the documentation for \c Scalar ).
	 * @return solution \f$h^{ij}\f$ of the above equation with the boundary
	 *	condition \f$h^{ij}=0\f$ at spatial infinity.
	 */
	Sym_tensor_tt poisson(int dzfin = 2) const ; 
	


} ; 
	



}
#endif