This file is indexed.

/usr/include/lorene/C++/Include/tensor.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
/*
 *  Definition of Lorene classes Tensor and Sym_tensor
 *
 */

/*
 *   Copyright (c) 2003-2004 Eric Gourgoulhon & Jerome Novak
 *
 *   Copyright (c) 1999-2001 Philippe Grandclement (for preceding class Tenseur)
 *   Copyright (c) 2000-2001 Eric Gourgoulhon      (for preceding class Tenseur)
 *   Copyright (c) 2002 Jerome Novak               (for preceding class Tenseur)
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


#ifndef __TENSOR_H_ 
#define __TENSOR_H_ 


/*
 * $Id: tensor.h,v 1.61 2014/10/13 08:52:37 j_novak Exp $
 * $Log: tensor.h,v $
 * Revision 1.61  2014/10/13 08:52:37  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.60  2013/06/05 15:43:49  j_novak
 * Suppression of leg_spectral_base()
 *
 * Revision 1.59  2013/01/11 15:44:54  j_novak
 * Addition of Legendre bases (part 2).
 *
 * Revision 1.58  2008/12/05 08:44:02  j_novak
 * New flag to control the "verbosity" of maxabs.
 *
 * Revision 1.57  2007/12/21 16:06:16  j_novak
 * Methods to filter Tensor, Vector and Sym_tensor objects.
 *
 * Revision 1.56  2006/06/07 14:08:58  j_novak
 * New methods set_index_type( / int).
 *
 * Revision 1.55  2005/10/25 08:56:34  p_grandclement
 * addition of std_spectral_base in the case of odd functions near the origin
 *
 * Revision 1.54  2004/07/08 12:21:51  j_novak
 * Replaced tensor::annule_extern_c2 with tensor::annule_extern_cn for a
 * more general transition.
 *
 * Revision 1.53  2004/06/17 06:54:23  e_gourgoulhon
 * Added method annule_extern_c2.
 *
 * Revision 1.52  2004/05/13 21:29:27  e_gourgoulhon
 * Added (external) functions central_value, max_all_domains,
 * min_all_domains and maxabs_all_domains.
 *
 * Revision 1.51  2004/03/24 14:53:39  j_novak
 * Double declarations suppressed
 *
 * Revision 1.50  2004/03/22 13:12:43  j_novak
 * Modification of comments to use doxygen instead of doc++
 *
 * Revision 1.49  2004/02/27 21:12:44  e_gourgoulhon
 * Suppressed function contract_desal (since contract has now the
 * boolean argument "desaliasing").
 *
 * Revision 1.48  2004/02/26 22:44:37  e_gourgoulhon
 * -- constructor of Tensor from Map is now declared explicit.
 * -- class Tensor: added methods compute_derive_lie and derive_lie
 * -- class Tensor_sym: added methods derive_cov, derive_con and derive_lie.
 *
 * Revision 1.47  2004/02/19 22:08:51  e_gourgoulhon
 * Added argument "comment" in method spectral_display,
 * as well as in external functions min, max, maxabs, etc...
 *
 * Revision 1.46  2004/02/18 18:42:41  e_gourgoulhon
 * -- Added methods trace.
 * -- Method scontract suppressed ( since it is the same as trace(int, int) ).
 *
 * Revision 1.45  2004/02/18 15:52:39  e_gourgoulhon
 * -- Added optional argument desaliasing in function contract.
 * -- Added new function contract for double contraction.
 *
 * Revision 1.44  2004/02/16 10:48:06  e_gourgoulhon
 * Added "class Tensor_sym;" at the beginning.
 *
 * Revision 1.43  2004/02/15 21:53:48  e_gourgoulhon
 * Modif. comments: suppressed the mention *** under development ***.
 *
 * Revision 1.42  2004/01/30 12:44:17  e_gourgoulhon
 * Added Tensor_sym operator*(const Tensor_sym&, const Tensor_sym& ).
 *
 * Revision 1.41  2004/01/27 13:05:10  j_novak
 * Removed the method Tensor::mult_r_ced()
 *
 * Revision 1.40  2004/01/19 16:31:40  e_gourgoulhon
 * Added operator()(int, int, int, int) and set(int, int, int, int)
 * for direct access to components of valence 4 tensors.
 *
 * Revision 1.39  2004/01/15 11:09:27  f_limousin
 * Modif in method contract_desal
 *
 * Revision 1.38  2004/01/15 11:00:44  f_limousin
 * Added method contract_desal for the contraction of two tensors with desaliasing
 *
 * Revision 1.37  2004/01/14 11:39:00  f_limousin
 * Added method contract for one tensor
 *
 * Revision 1.36  2004/01/08 09:21:39  e_gourgoulhon
 * Added arithmetics of Tensor_sym.
 * Added arithmetics with Scalar (to solve some ambiguities with respect
 * to the Scalar arithmetics).
 * Added Tensor_sym tensorial product.
 *
 * Revision 1.35  2004/01/04 20:47:37  e_gourgoulhon
 * -- Introduction of new derived class Tensor_sym to store tensor with
 *    two symmetric indices
 * -- Suppression of class Tensor_delta (now a special case of Tensor_sym).
 *
 * Revision 1.34  2003/12/27 14:58:01  e_gourgoulhon
 * Improved documentation. In particular, better description of methods
 * derive_cov(), derive_con() and divergence(), taking into account the
 * new index convention for covariant derivatives.
 *
 * Revision 1.33  2003/12/05 16:41:05  f_limousin
 * Added method operator*
 *
 * Revision 1.32  2003/11/06 14:43:37  e_gourgoulhon
 * Gave a name to const arguments in certain method prototypes (e.g.
 * constructors) to correct a bug of DOC++.
 *
 * Revision 1.31  2003/11/05 15:25:57  e_gourgoulhon
 * Added declaration of external functions:
 * max, min, maxabs, diffrel and diffrelmax.
 *
 * Revision 1.30  2003/11/03 10:58:00  j_novak
 * Suppressed the constructor from a Sym_tensor.
 *
 * Revision 1.29  2003/10/29 11:00:42  e_gourgoulhon
 * Virtual functions dec_dzpuis and inc_dzpuis have now an integer argument to
 *  specify by which amount dzpuis is to be increased.
 * Accordingly virtual methods dec2_dzpuis and inc2_dzpuis have been suppressed.
 *
 * Revision 1.28  2003/10/28 21:21:50  e_gourgoulhon
 * Member function Tensor::contract(int, int) renamed
 *  Tensor::scontract(int, int) in order not to mask
 * the non-member function contract.
 *
 * Revision 1.27  2003/10/27 10:44:00  e_gourgoulhon
 * Declaration of class Sym_tensor is now in file sym_tensor.h.
 *
 * Revision 1.26  2003/10/24 15:00:19  j_novak
 * Forgotten Class declaration... thanks IBM aix!
 *
 * Revision 1.25  2003/10/20 14:26:02  j_novak
 * New assignement operators.
 *
 * Revision 1.24  2003/10/20 09:32:10  j_novak
 * Members p_potential and p_div_free of the Helmholtz decomposition
 * + the method decompose_div(Metric).
 *
 * Revision 1.23  2003/10/19 19:47:31  e_gourgoulhon
 * Introduced new virtual method spectral_display.
 *
 * Revision 1.22  2003/10/16 15:24:30  e_gourgoulhon
 * Name of method annule(int ) changed to annule_domain(int ).
 *
 * Revision 1.21  2003/10/16 14:21:33  j_novak
 * The calculation of the divergence of a Tensor is now possible.
 *
 * Revision 1.20  2003/10/13 13:52:39  j_novak
 * Better managment of derived quantities.
 *
 * Revision 1.19  2003/10/08 14:24:08  j_novak
 * replaced mult_r_zec with mult_r_ced
 *
 * Revision 1.18  2003/10/06 20:48:23  e_gourgoulhon
 * Added methods down and up_down.
 *
 * Revision 1.17  2003/10/06 16:17:29  j_novak
 * Calculation of contravariant derivative and Ricci scalar.
 *
 * Revision 1.16  2003/10/06 15:12:56  e_gourgoulhon
 * Added tensor contraction and raising of index.
 *
 * Revision 1.15  2003/10/06 13:58:45  j_novak
 * The memory management has been improved.
 * Implementation of the covariant derivative with respect to the exact Tensor
 * type.
 *
 * Revision 1.14  2003/10/05 21:07:27  e_gourgoulhon
 * Method std_spectral_base() is now virtual.
 *
 * Revision 1.13  2003/10/03 11:21:45  j_novak
 * More methods for the class Metric
 *
 * Revision 1.12  2003/10/02 15:45:48  j_novak
 * New class Metric
 *
 * Revision 1.11  2003/10/01 15:41:14  e_gourgoulhon
 * class name Delta changed to Tensor_delta.
 *
 * Revision 1.10  2003/10/01 13:03:52  e_gourgoulhon
 * The method get_mp() returns now a reference (and not a pointer)
 * onto a mapping.
 *
 * Revision 1.9  2003/09/29 13:48:17  j_novak
 * New class Delta.
 *
 * Revision 1.8  2003/09/26 14:33:51  j_novak
 * Arithmetic functions for the class Tensor
 *
 * Revision 1.7  2003/09/26 08:05:29  j_novak
 * New class Vector.
 *
 * Revision 1.6  2003/09/25 21:01:50  e_gourgoulhon
 * Improved comments.
 *
 * Revision 1.5  2003/09/25 13:37:38  j_novak
 * Symmetric tensors of valence 2 are now implemented (not tested yet).
 *
 * Revision 1.4  2003/09/24 15:10:54  j_novak
 * Suppression of the etat flag in class Tensor (still present in Scalar)
 *
 * Revision 1.3  2003/09/24 08:46:31  j_novak
 * Added tensor.h and scalar.h to the documentation
 *
 * Revision 1.2  2003/09/23 08:53:11  e_gourgoulhon
 * not ready yet
 *
 * Revision 1.1  2003/09/22 12:50:47  e_gourgoulhon
 * First version: not ready yet!
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/tensor.h,v 1.61 2014/10/13 08:52:37 j_novak Exp $
 *
 */

#define COV -1
#define CON +1

#define N_MET_MAX 5

// Headers Lorene 
#include "itbl.h"
#include "base_vect.h"
#include "map.h"

namespace Lorene {
class Scalar ;
class Vector ; 
class Tensor_sym ;
class Sym_tensor ;
class Metric ;

			//-------------------------//
			//       class Tensor      //
			//-------------------------//
			

/**
 * Tensor handling. \ingroup (tensor)
 *
 * This class has been devised to replace \c Tenseur  and \c Cmp  (the
 *  latter via the derived class \c Scalar ).
 * 
 * The \c Tensor  class is intended to store the components of a tensorial 
 * field with respect to a specific basis (triad).  
 * 
 * All this is \e 3D meaning that the indices go from 1 to 3. 
 * 
 * 
 */
class Tensor { 

    // Data : 
    // -----
    protected:
	
        /// Mapping on which the numerical values at the grid points are defined
	const Map* const mp ;	

    /// Valence of the tensor (0 = scalar, 1 = vector, etc...)
	int valence ;	
        	
	/** Vectorial basis (triad) with respect to which the tensor
	 *  components are defined. 
	 */
	const Base_vect* triad ; 

	/** 1D array of integers (class \c Itbl ) of size \c valence  
	 *  containing the type of each index: 
	 *  \c COV  for a covariant one and \c CON  for a contravariant one.
	 * 
	 */	
	Itbl type_indice ;	
	
	int n_comp ;	///< Number of stored components, depending on the symmetry.

	/// Array of size \c n_comp  of pointers onto the components.
	Scalar** cmp ;   


    // Derived data : 
    // ------------
     protected:
	/**
	 * Array on the \c Metric 's which were used to compute derived
	 * quantities, like \c p_derive_cov , etc... 
	 * The i-th element of this array is the \c Metric  used to
	 * compute the i-th element of \c p_derive_cov , etc..
	 */
	mutable const Metric* met_depend[N_MET_MAX] ; 

	/** Array of pointers on the covariant derivatives of \c this 
         * with respect to various metrics.
	 * See the comments of \c met_depend . See also the comments
         * of method \c derive_cov()  for the index convention of the
         * covariant derivation.  
	 */
	mutable Tensor* p_derive_cov[N_MET_MAX];
	
	/** Array of pointers on the contravariant derivatives of \c this 
         * with respect to various metrics.
	 * See the comments of \c met_depend . See also the comments
         * of method \c derive_con()  for a precise definition of a
         * "contravariant" derivative.
 	 */
	mutable Tensor* p_derive_con[N_MET_MAX];

	/** Array of pointers on the divergence of \c this 
         * with respect to various metrics.
	 * See the comments of \c met_depend . See also the comments
         * of method \c divergence()  for a precise definition of a
         * the divergence with respect to a given metric.
	 */
	mutable Tensor* p_divergence[N_MET_MAX];

   
    // Constructors - Destructor :
    // -------------------------
	
	public: 

	/** Standard constructor.
	 * 
	 * @param map   the mapping 
	 * @param val   valence of the tensor
	 * @param tipe  1-D array of integers (class \c Itbl ) 
	 *		of size \c valence  containing the type 
	 *		of each index, \c COV  for a covariant one 
	 *		and \c CON  for a contravariant one,  with the 
	 *		following storage convention: 
	 *			\li \c tipe(0)  : type of the first index 
	 *			\li \c tipe(1)  : type of the second index 
	 *			\li and so on... 
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *		    the tensor components are defined 
	 */
	Tensor(const Map& map, int val, const Itbl& tipe, 
		 	const Base_vect& triad_i) ;

	/** Standard constructor with the triad passed as a pointer.
	 * 
	 * @param map   the mapping 
	 * @param val   valence of the tensor
	 * @param tipe  1-D array of integers (class \c Itbl ) 
	 *		of size \c valence  containing the type 
	 *		of each index, \c COV  for a covariant one 
	 *		and \c CON  for a contravariant one,  with the 
	 *		following storage convention: 
	 *			\li \c tipe(0)  : type of the first index 
	 *			\li \c tipe(1)  : type of the second index 
	 *			\li and so on... 
	 * @param triad_i  pointer on the vectorial basis (triad) with respect 
	 *		    to which the tensor components are defined 
	 *		    (can be set to 0x0 for a scalar field)
	 */
	Tensor(const Map& map, int val, const Itbl& tipe, 
		 	const Base_vect* triad_i) ;

	/** Standard constructor when all the indices are of 
	 *  the same type.
	 * 
	 * @param map  the mapping
	 * @param val   valence of the tensor
	 * @param tipe  the type (\c COV  or \c CON ) of the indices.
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined.
	 */
	Tensor(const Map& map, int val, int tipe, 
			const Base_vect& triad_i) ;

	Tensor(const Tensor&) ;  ///< Copy constructor

	/** Constructor from a file (see \c sauve(FILE*) ).
	 * 
	 * @param map  the mapping
	 * @param triad_i   vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined. It will
	 *			  be checked that it coincides with the basis
	 *			  saved in the file.
	 * @param fich  file which has been created by 
	 *			    the function \c sauve(FILE*) .
	 */
	Tensor(const Map& map, const Base_vect& triad_i, FILE* fich) ;

    protected:
	/**
	 *  Constructor for a scalar field: to be used only by the derived
	 *  class \c Scalar .
	 *
	 */
	 explicit Tensor(const Map& map) ;

	/**
	 * Constructor to be used by derived classes, with symmetries among
	 *  the components. The number of independent components is
	 *  given as an argument (\c n_comp_i ), and not computed
	 *	from the valence, as in the standard constructor.  
	 *
	 * 
	 * @param map  the mapping
	 * @param val   valence of the tensor
	 * @param tipe  1-D array of integers (class \c Itbl ) 
	 *		of size \c valence  containing the type 
	 *		of each index, \c COV  for a covariant one 
	 *		and \c CON  for a contravariant one,  with the 
	 *		following storage convention: 
	 *			\li \c tipe(0)  : type of the first index 
	 *			\li \c tipe(1)  : type of the second index 
	 *			\li and so on... 
	 * @param n_comp_i number of components to be stored
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined
	 */	 
	Tensor(const Map& map, int val, const Itbl& tipe, int n_comp_i,
		    const Base_vect& triad_i) ;

	/**
	 * Constructor used by derived classes, with symmetries among
	 *  the components, when all the indices are of 
	 *  the same type. The number of independent components is
	 *  given as a argument (\c n_comp_i ), and not computed
	 *	from the valence, as in the standard constructor.  
	 * 
	 * @param map  the mapping
	 * @param val   valence of the tensor
	 * @param tipe  the type of the indices.
	 * @param n_comp_i  number of components to be stored
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined
	 */
	Tensor(const Map& map, int val, int tipe, int n_comp_i, 
		 const Base_vect& triad_i) ;


    public: 

	virtual ~Tensor() ;	///< Destructor
	
    // Memory management
    // -----------------
    protected:
	virtual void del_deriv() const ;	///< Deletes the derived quantities

	/// Sets the pointers on derived quantities to 0x0
	void set_der_0x0() const ; 

	/**
	 * Logical destructor of the derivatives depending on the i-th
	 * element of \c met_depend .
	 */	
	virtual void del_derive_met(int) const ;

	/**
	 * Sets all the i-th components of \c met_depend , 
	 * \c p_derive_cov , etc... to 0x0.
	 */
	void set_der_met_0x0(int) const ;

	/**
	 * To be used to describe the fact that the derivatives members have
	 * been calculated with \c met .
	 * 
	 * First it sets a null element of \c met_depend  to 
	 * \c \&met  and puts \c this  in 
	 * the list of the dependancies of \c met .
	 * 
	 */
	void set_dependance (const Metric&) const ;

	/**
	 * Returns the position of the pointer on \c metre  in 
	 * the array \c met_depend .
	 *
	 */
	int get_place_met(const Metric&) const ;
	
    // Mutators / assignment
    // ---------------------
    public:
	/**
	 * Sets the logical state of all components to \c ETATNONDEF  
	 * (undefined state).
	 */
	virtual void set_etat_nondef() ;
	
	/**
	 * Sets the logical state of all components to \c ETATZERO  
	 *(zero state).
	 */
	virtual void set_etat_zero() ;

	/**
	 * Sets the logical state of all components to \c ETATQCQ  
	 * (ordinary state).
	 */
	virtual void set_etat_qcq() ;
	
	/**
	 *  Performs the memory allocation of all the 
	 *  elements, down to the \c double  arrays of the \c Tbl s. 
	 *  This function performs in fact recursive calls to 
	 *  \c set_etat_qcq() 
	 *  on each element of the chain \c Scalar  ->
	 *  \c Valeur  -> \c Mtbl  -> \c Tbl . 
	 */
	virtual void allocate_all() ; 

	/** Sets a new vectorial basis (triad) of decomposition and modifies
	 *  the components accordingly. 
	 */
	virtual void change_triad(const Base_vect& new_triad) ; 
    
	/** Assigns a new vectorial basis (triad) of decomposition. 
	 *  NB: this function modifies only the member \c triad  and
	 *  leave unchanged the components (member \c cmp ). In order to 
	 *  change them coherently with the new basis, the function 
	 *  \c change_triad(const Base_vect\& ) must be called instead. 
	 */
	void set_triad(const Base_vect& new_triad) ; 

	
	virtual void operator=(const Tensor&) ;///< Assignment to a \c Tensor 
	
	/** Returns the value of a component (read/write version).
	 *
	 * @param ind  1-D \c Itbl  of size \c valence  containing the 
	 *		values of each index specifing the component,  with the 
	 *		following storage convention: 
	 *			\li \c ind(0)  : value of the first index (1, 2 or 3) 
	 *			\li \c ind(1)  : value of the second index (1, 2 or 3) 
	 *			\li and so on... 
	 * @return modifiable reference on the component specified by \c ind 
	 *
	 */
	Scalar& set(const Itbl& ind) ; 
	
	/** Returns the value of a component for a tensor of valence 2
	 *  (read/write version).
	 *
	 * @param i1  value of the first index (1, 2 or 3)
	 * @param i2  value of the second index (1, 2 or 3)
	 *
	 * @return modifiable reference on the component specified by \c (i1,i2) 
	 *
	 */
	Scalar& set(int i1, int i2) ; 
	
	
	/** Returns the value of a component for a tensor of valence 3
	 *  (read/write version).
	 *
	 * @param i1  value of the first index (1, 2 or 3)
	 * @param i2  value of the second index (1, 2 or 3)
	 * @param i3  value of the third index (1, 2 or 3)
	 *
	 * @return modifiable reference on the component specified by \c (i1,i2,i3) 
	 *
	 */
	Scalar& set(int i1, int i2, int i3) ; 
	
	/** Returns the value of a component for a tensor of valence 4
	 *  (read/write version).
	 *
	 * @param i1  value of the first index (1, 2 or 3)
	 * @param i2  value of the second index (1, 2 or 3)
	 * @param i3  value of the third index (1, 2 or 3)
	 * @param i4  value of the fourth index (1, 2 or 3)
	 *
	 * @return modifiable reference on the component specified by 
     *   \c (i1,i2,i3,i4) 
	 *
	 */
	Scalar& set(int i1, int i2, int i3, int i4) ; 
	
	/**
	 * Sets the \c Tensor  to zero in a given domain.
	 *	@param l [input]  Index of the domain in which the \c Tensor 
	 *			  will be set (logically) to zero.
	 */
	void annule_domain(int l) ; 

	/**
	 * Sets the \c Tensor  to zero in several domains.
	 *	@param l_min [input] The \c Tensor  will be set (logically) 
	 *			     to zero
	 *			     in the domains whose indices are in the range
	 *			     \c [l_min,l_max] .
	 *	@param l_max [input] see the comments for \c l_min .
	 * 
	 * Note that \c annule(0,nz-1) , where \c nz  is the total number
	 * of domains, is equivalent to \c set_etat_zero() .
	 */
	virtual void annule(int l_min, int l_max) ; 

        /** Performs a smooth (C^n) transition in a given domain 
         *  to zero.
         *  @param l_0 [input] in the domain of index l0 the tensor is
         *  multiplied by the right polynomial (of degree \e 2n+1), to 
         *  ensure continuty of the function and its \e n first 
         *  derivative at both ends of this domain. The tensor is unchanged
         *  in the domains \e l < \e l_0 and set to zero in domains \e l > 
	 *  \e l_0.
	 *  @param deg [input] the degree \e n of smoothness of the 
	 *  transition.
         */
         void annule_extern_cn(int l_0, int deg) ;

	/**
	 * Sets the standard spectal bases of decomposition for each component.
	 * To be used only with \c valence  lower than or equal 2.
	 */
	virtual void std_spectral_base() ; 
	
	/**
	 * Sets the standard odd spectal bases of decomposition for each component.
	 * Currently only implemented for a scalar.
	 */
	virtual void std_spectral_base_odd() ; 
	
	/** Decreases by \c dec  units the value of \c dzpuis  and 
	 *  changes accordingly the values in the 
	 *  compactified external domain (CED).
	 */
	virtual void dec_dzpuis(int dec = 1) ; 

	/** Increases by \c inc  units the value of \c dzpuis  and 
	 *  changes accordingly the values in the 
	 *  compactified external domain (CED).
	 */
	virtual void inc_dzpuis(int inc = 1) ; 
	
	/** Applies exponential filters to all components 
	 * (see \c Scalar::exponential_filter_r ). Works only for Cartesian 
	 * components.
	 */
	virtual void  exponential_filter_r(int lzmin, int lzmax, int p, 
			    double alpha= -16.) ;

	/** Applies exponential filters to all components 
	 * (see \c Scalar::exponential_filter_ylm ). Works only for Cartesian 
	 * components.
	 */
	virtual void exponential_filter_ylm(int lzmin, int lzmax, int p, 
			    double alpha= -16.) ;

    // Computational methods
    // ---------------------
    
    protected: 
        /** Computes the Lie derivative of \c this  with respect to some
         *  vector field \c v  (protected method; the public interface
         *  is method \c derive_lie ).
         */
        void compute_derive_lie(const Vector& v, Tensor& resu) const ; 

    
    public:
	/** Returns the covariant derivative of \c this  with respect to some 
         * metric \f$\gamma\f$.
         * \f$T\f$ denoting the tensor represented by \c this  and
         * \f$\nabla T\f$ its covariant derivative with respect to 
         * the metric \f$\gamma\f$, 
         * the extra index (with respect to the indices of \f$T\f$)
         * of \f$\nabla T\f$ is chosen to be the \b last  one.
         * This convention agrees with that of MTW (see Eq. (10.17) of MTW).
         * For instance, if \f$T\f$ is a 1-form, whose components
         * w.r.t. the triad \f$e^i\f$ are \f$T_i\f$: \f$T=T_i \; e^i\f$,
         * then the covariant derivative of \f$T\f$ is the bilinear form
         * \f$\nabla T\f$ whose components \f$\nabla_j T_i\f$ are
         * such that 
         * \f[
         *  \nabla T = \nabla_j T_i \; e^i \otimes e^j
         * \f]
         *
         * @param gam metric \f$\gamma\f$
         * @return covariant derivative \f$\nabla T\f$ of \c this  with 
         *  respect to the connection \f$\nabla\f$ associated with the
         *  metric \f$\gamma\f$ 
	 */
	const Tensor& derive_cov(const Metric& gam) const ; 

	/** Returns the "contravariant" derivative of \c this  with respect 
	 * to some metric \f$\gamma\f$, by raising the last index of the
         * covariant derivative (cf. method \c derive_cov() ) with 
         * \f$\gamma\f$.
	 */
	const Tensor& derive_con(const Metric& gam) const ; 

	/** Computes the divergence of \c this  with respect to 
         * some metric \f$\gamma\f$. 
         * The divergence is taken with respect of the last index of \c this 
         * which thus must be contravariant.
         * For instance if the tensor \f$T\f$ represented by \c this 
         * is a twice contravariant tensor, whose 
         * components w.r.t. the
         * triad \f$e_i\f$ are \f$T^{ij}\f$: \f$T = T^{ij} \; e_i \otimes e_j\f$,
         * the divergence of \f$T\f$ w.r.t. \f$\gamma\f$ is the vector 
         * \f[
         *   {\rm div}\,  T = \nabla_k T^{ik} \; e_i
         * \f]
         * where \f$\nabla\f$ denotes the connection associated with the metric
         * \f$\gamma\f$. 
         * @param gam metric \f$\gamma\f$
         * @return divergence of \c this  with respect to \f$\gamma\f$. 
	 */
	const Tensor& divergence(const Metric& gam) const ; 


        /** Computes the Lie derivative of \c this  with respect to some
         *  vector field \c v 
         */
        Tensor derive_lie(const Vector& v) const ; 

	/** Computes a new tensor by raising an index of \c *this 
	 *
	 *  @param ind index to be raised, with the 
 	 *   following convention : 
 	 *    \li \c ind1  = 0 : first index of the tensor 
 	 *    \li \c ind1  = 1 : second index of the tensor 
	 *    \li and so on... 
	 *   (\c ind  must be of covariant type (\c COV )).
	 *  @param gam metric used to raise the index (contraction with the
	 *    twice contravariant form of the metric on the index \c ind ). 
	 * 
	 */
	Tensor up(int ind, const Metric& gam) const ; 

	/** Computes a new tensor by lowering an index of \c *this 
	 *
	 *  @param ind index to be lowered, with the 
 	 *   following convention : 
 	 *    \li \c ind1  = 0 : first index of the tensor 
 	 *    \li \c ind1  = 1 : second index of the tensor 
	 *    \li and so on... 
	 *   (\c ind  must be of covariant type (\c CON )).
	 *  @param gam metric used to lower the index (contraction with the
	 *    twice covariant form of the metric on the index \c ind ). 
	 * 
	 */
	Tensor down(int ind, const Metric& gam) const ; 

	/** Computes a new tensor by raising or lowering all the indices 
	 *  of \c *this .
	 *
	 *  @param gam metric used to lower the contravariant indices
	 *    and raising the covariant ones. 
	 * 
	 */
	Tensor up_down(const Metric& gam) const ; 

    /** Trace on two different type indices.
     *  @param ind1 first index for the contraction, with the 
 	 *   following convention : 
 	 *    \li \c ind1  = 0 : first index of the tensor 
 	 *    \li \c ind1  = 1 : second index of the tensor 
	 *    \li and so on... 
     *  @param ind2 second index for the contraction 
     */
    Tensor trace(int ind1, int ind2) const ; 

    /** Trace with respect to a given metric.
     *  @param ind1 first index for the contraction, with the 
 	 *   following convention : 
 	 *    \li \c ind1  = 0 : first index of the tensor 
 	 *    \li \c ind1  = 1 : second index of the tensor 
	 *    \li and so on... 
     *  @param ind2 second index for the contraction 
     *  @param gam metric used to raise or lower ind1 in order that it
     *      has a opposite type than ind2
     */
    Tensor trace(int ind1, int ind2, const Metric& gam) const ; 

    /** Trace on two different type indices for a valence 2 tensor.
     */
    Scalar trace() const ; 

    /** Trace with respect to a given metric for a valence 2 tensor.
     *  @param gam metric used to raise or lower one of the indices, 
     *      in order to take the trace 
     */
    Scalar trace(const Metric& gam) const ; 


    // Accessors
    // ---------
        public:
	/**
	 * Returns the position in the array \c cmp  of a 
	 * component given by its indices.  
	 *
	 * @param ind [input] 1-D array of integers (class \c Itbl )
	 *		 of size \c valence  giving the 
	 *		values of each index specifing the component,  with the 
	 *		following storage convention: 
	 *			\li \c ind(0)  : value of the first index (1, 2 or 3) 
	 *			\li \c ind(1)  : value of the second index (1, 2 or 3) 
	 *			\li and so on... 
	 *
	 * @return position in the array \c cmp  of the pointer to the
	 *  	\c Scalar  containing the component specified by \c ind 
	 */
	virtual int position(const Itbl& ind) const ;

	/**
	 * Returns the indices of a component given by its position in the 
	 * array \c cmp . 
	 *
	 * @param pos [input] position in the array \c cmp 
	 *		of the pointer to the \c Scalar  representing a component
	 *
	 * @return 1-D array of integers (class \c Itbl ) of
	 *         size \c valence  giving the value of each index 
	 *	   for the component located at the position \c pos  in
	 *		the array \c cmp, with the 
	 *		following storage convention: 
	 *			\li \c Itbl(0)  : value of the first index (1, 2 or 3) 
	 *			\li \c Itbl(1)  : value of the second index (1, 2 or 3) 
	 *			\li and so on... 
	 */
	virtual Itbl indices(int pos) const ;
	
	public:
	/// Returns the mapping.
	const Map& get_mp() const {return *mp ;} ; 

	/** Returns the vectorial basis (triad) on which the components
	 *  are defined.  
	 */
	const Base_vect* get_triad() const {return triad;} ; 
    
	/// Returns the valence.
	int get_valence() const {return valence ; } ; 

	/// Returns the number of stored components.
	int get_n_comp() const {return n_comp ;} ; 
	
	/**
	 *  Gives the type (covariant or contravariant)
	 *  of the index number \c i . \c i  must be
	 *  strictly lower than \c valence  and obey the following
	 *		      convention: 
	 *			\li \c i  = 0 : first index 
	 *			\li \c i  = 1 : second index 
	 *			\li and so on... 
	 * 
	 *  @return COV for a covariant index, CON for a
	 *	    contravariant one. 
	 */
	int get_index_type(int i) const {return type_indice(i) ;};

	/**
	 * Returns the types of all the indices.
	 * 
	 *  @return 1-D array of integers (class \c Itbl ) of size \c valence  
	 *  containing the type of each index, 
	 *  \c COV  for a covariant one and \c CON  
	 *  for a contravariant one.
	 */
	Itbl get_index_type() const {return type_indice ; } ;

	/**
	 *  Sets the type of the index number \c i . \c i  must be
	 *  strictly lower than \c valence  and obey the following
	 *		      convention: 
	 *			\li \c i  = 0 : first index 
	 *			\li \c i  = 1 : second index 
	 *			\li and so on... 
	 * 
	 *  @return reference on the type that can be modified 
	 *  (\c COV for a covariant index, \c CON for a contravariant one)
	 */
	int& set_index_type(int i) {return type_indice.set(i) ;};

	/**
	 * Sets the types of all the indices.
	 * 
	 *  @return a reference on the 1-D array of integers (class \c Itbl ) 
	 *  of size \c valence that can be modified
	 *  (\c COV  for a covariant one and \c CON  for a contravariant one)
	 */
	Itbl& set_index_type() {return type_indice ; } ;

	
	/** Returns the value of a component (read-only version).
	 *
	 * @param ind  1-D \c Itbl  of size \c valence  containing the 
	 *		values of each index specifing the component,  with the 
	 *		following storage convention: 
	 *			\li \c ind(0)  : value of the first index (1, 2 or 3) 
	 *			\li \c ind(1)  : value of the second index (1, 2 or 3) 
	 *			\li and so on... 
	 * @return reference on the component specified by \c ind 
	 *
	 */
	const Scalar& operator()(const Itbl& ind) const ; 

	/** Returns the value of a component for a tensor of valence 2
	 *  (read-only version).
	 *
	 * @param i1  value of the first index (1, 2 or 3)
	 * @param i2  value of the second index (1, 2 or 3)
	 *
	 * @return reference on the component specified by \c (i1,i2) 
	 *
	 */
	const Scalar& operator()(int i1, int i2) const ; 

	/** Returns the value of a component for a tensor of valence 3
	 *  (read-only version).
	 *
	 * @param i1  value of the first index (1, 2 or 3)
	 * @param i2  value of the second index (1, 2 or 3)
	 * @param i3  value of the third index (1, 2 or 3)
	 *
	 * @return reference on the component specified by \c (i1,i2,i3) 
	 *
	 */
	const Scalar& operator()(int i1, int i2, int i3) const ; 
	
	/** Returns the value of a component for a tensor of valence 4
	 *  (read-only version).
	 *
	 * @param i1  value of the first index (1, 2 or 3)
	 * @param i2  value of the second index (1, 2 or 3)
	 * @param i3  value of the third index (1, 2 or 3)
	 * @param i4  value of the fourth index (1, 2 or 3)
	 *
	 * @return reference on the component specified by \c (i1,i2,i3,i4) 
	 *
	 */
	const Scalar& operator()(int i1, int i2, int i3, int i4) const ; 
	
    // Member arithmetics
    // ------------------
    public:
	void operator+=(const Tensor &) ;		    ///< += Tensor
	void operator-=(const Tensor &) ;		    ///< -= Tensor

    // Outputs
    // -------
    public:
	virtual void sauve(FILE *) const ;	    ///< Save in a binary file

	/** Displays the spectral coefficients and the associated
	 *  basis functions of each component. This function shows 
	 *  only the values greater than a given threshold.
         *   @param comment comment to be printed at top of the display
         *      (default: 0x0 = nothing printed)
	 *   @param threshold [input] Value above which a coefficient is printed
	 *    (default: 1.e-7)
	 *   @param precision [input] Number of printed digits (default: 4)
	 *   @param ostr [input] Output stream used for the printing (default: cout)
	 */
	virtual void spectral_display(const char* comment = 0x0, 
                            double threshold = 1.e-7, int precision = 4, 
			    ostream& ostr = cout) const ;

	friend ostream& operator<<(ostream& , const Tensor & ) ;
	

    // Friend classes 
    // ---------------
	friend class Scalar ;
	friend class Vector ;
	friend class Sym_tensor ;
    friend class Tensor_sym ; 
	friend class Metric ;
  
    // Mathematical operators
    // ----------------------
    
    friend Scalar operator+(const Tensor&, const Scalar&) ;
    friend Scalar operator+(const Scalar&, const Tensor&) ;
    friend Scalar operator-(const Tensor&, const Scalar&) ;
    friend Scalar operator-(const Scalar&, const Tensor&) ;
    friend Tensor operator*(const Tensor&, const Tensor&) ; 
    friend Tensor_sym operator*(const Tensor&, const Tensor_sym&) ; 
    friend Tensor_sym operator*(const Tensor_sym&, const Tensor&) ; 	
    friend Tensor_sym operator*(const Tensor_sym&, const Tensor_sym&) ; 	
   
};



			//-------------------------//
			//    class Tensor_sym     //
			//-------------------------//

/**
 * Symmetric tensors (with respect to two of their arguments).
 *
 * This subclass of \c Tensor  is intended to store the components of a 
 * tensorial field with respect to a specific basis (triad), in the case
 * the tensor has a valence at least 2 and is symmetric with respect 
 * to two of its arguments (or in other words, the components are
 * symmetric with respect to two of their indices).   
 * \ingroup (tensor)
 * 
 */
class Tensor_sym : public Tensor { 

    // Data : 
    // -----
    protected:
	
        /// Number of the first symmetric index (\c 0<= \c id_sym1 < \c valence )
        int id_sym1 ;
        
        /** Number of the second symmetric index 
         * (\c id_sym1 < \c id_sym2 < \c valence )
         */
        int id_sym2 ;
        
         
    // Constructors - Destructor :
    // -------------------------
	
	public: 

	/** Standard constructor.
	 * 
	 * @param map   the mapping 
	 * @param val   valence of the tensor (must be at least 2)
	 * @param tipe  1-D array of integers (class \c Itbl ) 
	 *		of size \c valence  containing the type 
	 *		of each index, \c COV  for a covariant one 
	 *		and \c CON  for a contravariant one,  with the 
	 *		following storage convention: 
	 *			\li \c tipe(0)  : type of the first index 
	 *			\li \c tipe(1)  : type of the second index 
	 *			\li and so on... 
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *		    the tensor components are defined 
         * @param index_sym1 number of the first symmetric index 
         *                      (\c 0<= \c index_sym1 < \c valence )
         * @param index_sym2 number of the second symmetric index 
         *                      (\c index_sym1 < \c index_sym2 < \c valence )
	 */
	Tensor_sym(const Map& map, int val, const Itbl& tipe, 
		 	const Base_vect& triad_i, int index_sym1, 
                        int index_sym2) ;

	/** Standard constructor when all the indices are of 
	 *  the same type.
	 * 
	 * @param map  the mapping
	 * @param val   valence of the tensor (must be at least 2)
	 * @param tipe  the type (\c COV  or \c CON ) of the indices.
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined.
         * @param index_sym1 number of the first symmetric index 
         *                      (\c 0<= \c index_sym1 < \c valence )
         * @param index_sym2 number of the second symmetric index 
         *                      (\c index_sym1 < \c index_sym2 < \c valence )
	 */
	Tensor_sym(const Map& map, int val, int tipe, const Base_vect& triad_i,
                    int index_sym1, int index_sym2) ;

	/** Constructor for a valence 3 symmetric tensor.
	 * 
	 * @param map  the mapping
	 * @param tipe0 type (\c COV  or \c CON ) of the first index.
	 * @param tipe1 type (\c COV  or \c CON ) of the second index.
	 * @param tipe2 type (\c COV  or \c CON ) of the third index.
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined.
         * @param index_sym1 number of the first symmetric index 
         *                      (\c 0<= \c index_sym1 \c <=2 )
         * @param index_sym2 number of the second symmetric index 
         *                      (\c index_sym1 < \c index_sym2 \c <=2 )
	 */
	Tensor_sym(const Map& map, int tipe0, int tipe1, int tipe2, 
                   const Base_vect& triad_i,
                   int index_sym1, int index_sym2) ;

	Tensor_sym(const Tensor_sym& a) ;  ///< Copy constructor

	/** Constructor from a file (see \c sauve(FILE*) ).
	 * 
	 * @param map  the mapping
	 * @param triad_i   vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined. It will
	 *			  be checked that it coincides with the basis
	 *			  saved in the file.
	 * @param fich  file which has been created by 
	 *			    the function \c sauve(FILE*).
	 */
	Tensor_sym(const Map& map, const Base_vect& triad_i, FILE* fich) ;

    public: 

	virtual ~Tensor_sym() ;	///< Destructor
	
    // Mutators / assignment
    // ---------------------
    public:
	
        /// Assignment to another \c Tensor_sym 
	virtual void operator=(const Tensor_sym& a) ;
	
        /** Assignment to a \c Tensor 
         * NB: the symmetry about the indices \c id_sym1  and 
         * \c id_sym2  of the input tensor is assumed but is not checked
         */
	virtual void operator=(const Tensor& a) ; 
	

    // Accessors
    // ---------
        public:
        /// Number of the first symmetric index (\c 0<= \c id_sym1 < \c valence )
        int sym_index1() const {return id_sym1;} ;
        
        /** Number of the second symmetric index 
         * (\c  id_sym1 < \c id_sym2 < \c valence )
         */
        int sym_index2() const {return id_sym2;} ;
        
	/**
	 * Returns the position in the array \c cmp  of a 
	 * component given by its indices.  
	 *
	 * @param ind [input] 1-D array of integers (class \c Itbl )
	 *		 of size \c valence  giving the 
	 *		values of each index specifing the component,  with the 
	 *		following storage convention: 
	 *			\li \c ind(0)  : value of the first index (1, 2 or 3) 
	 *			\li \c ind(1)  : value of the second index (1, 2 or 3) 
	 *			\li and so on... 
	 *
	 * @return position in the array \c cmp  of the pointer to the
	 *  	\c Scalar  containing the component specified by \c ind 
	 */
	virtual int position(const Itbl& ind) const ;

	/**
	 * Returns the indices of a component given by its position in the 
	 * array \c cmp . 
	 *
	 * @param pos [input] position in the array \c cmp 
	 *		of the pointer to the \c Scalar  representing a component
	 *
	 * @return 1-D array of integers (class \c Itbl ) of
	 *         size \c valence  giving the value of each index 
	 *	   for the component located at the position \c pos  in
	 *		the array \c cmp, with the 
	 *		following storage convention: 
	 *			\li \c Itbl(0)  : value of the first index (1, 2 or 3) 
	 *			\li \c Itbl(1)  : value of the second index (1, 2 or 3) 
	 *			\li and so on... 
	 */
	virtual Itbl indices(int pos) const ;
        
            
    // Outputs
    // -------
    public:
	virtual void sauve(FILE *) const ;      ///< Save in a binary file
	

    // Tensor calculus
    // ---------------
    public:
    
	/** Returns the covariant derivative of \c this  with respect to some 
         * metric \f$\gamma\f$.
         * \f$T\f$ denoting the tensor represented by \c this  and
         * \f$\nabla T\f$ its covariant derivative with respect to 
         * the metric \f$\gamma\f$, 
         * the extra index (with respect to the indices of \f$T\f$)
         * of \f$\nabla T\f$ is chosen to be the \b last  one.
         * This convention agrees with that of MTW (see Eq. (10.17) of MTW).
         *
         * @param gam metric \f$\gamma\f$
         * @return covariant derivative \f$\nabla T\f$ of \c this  with 
         *  respect to the connection \f$\nabla\f$ associated with the
         *  metric \f$\gamma\f$ 
	 */
	const Tensor_sym& derive_cov(const Metric& gam) const ; 

	/** Returns the "contravariant" derivative of \c this  with respect 
	 * to some metric \f$\gamma\f$, by raising the last index of the
         * covariant derivative (cf. method \c derive_cov() ) with 
         * \f$\gamma\f$.
	 */
	const Tensor_sym& derive_con(const Metric& gam) const ; 

        /** Computes the Lie derivative of \c this  with respect to some
         *  vector field \c v 
         */
        Tensor_sym derive_lie(const Vector& v) const ; 


    // Mathematical operators
    // ----------------------
    
    friend Tensor_sym operator*(const Tensor&, const Tensor_sym&) ; 
    friend Tensor_sym operator*(const Tensor_sym&, const Tensor&) ; 
 	
}; 



/**
 * \defgroup tenso_cal Tensor calculus
 * \ingroup (tensor)
 * @{
 */

/// Tensorial product
Tensor operator*(const Tensor& a, const Tensor& b) ; 

/// Tensorial product with symmetries
Tensor_sym operator*(const Tensor& a, const Tensor_sym& b) ; 

/// Tensorial product with symmetries
Tensor_sym operator*(const Tensor_sym& a, const Tensor& b) ; 

/** Tensorial product of two symmetric tensors.
 * NB: the output is an object of class \c Tensor_sym , with
 * the two symmetric indices corresponding to the symmetric indices
 * of tensor \c a . This means that the symmetries of tensor
 * \c b  indices are not used in the storage, since 
 * there is currently no class in Lorene to manage
 * tensors with more than two symmetric indices. 
 */
Tensor_sym operator*(const Tensor_sym& a, const Tensor_sym& b) ; 


/** Contraction of two tensors. 
 *
 * @param t1 [input] first tensor 
 * @param ind1 [input] index of the first tensor for the contraction, 
 *    obeying to the following convention : 
 *    \li \c ind1  = 0 : first index of the tensor 
 *    \li \c ind1  = 1 : second index of the tensor 
 *    \li and so on... 
 *  (\c ind1  must thus be in the range 0...t1.valence-1)  
 * @param t2 [input] second tensor 
 * @param ind2 [input] index of the second tensor for the contraction, with 
 *   the same convention as \c ind1 
 * @param desaliasing [input] determines whether the products are performed
 *      with desaliasing or not  
 * @return tensor resulting of the contraction of the index \c ind1  of
 *  \c t1  with the index \c ind2  of \c t2 .
 * NB: the types (\c COV  or \c CON ) of the indices \c ind1  and
 * \c ind2  must be different. 
 */
Tensor contract(const Tensor& t1, int ind1, const Tensor& t2, int ind2, 
        bool desaliasing = false) ;

/** Double contraction of two tensors. 
 *
 * @param t1 [input] first tensor 
 * @param ind_i1 [input] position of the first index \e i1 in the first 
 *      tensor for the contraction, 
 *    obeying to the following convention : 
 *    \li \c ind_i1  = 0 : first index of the tensor 
 *    \li \c ind_i1  = 1 : second index of the tensor 
 *    \li and so on... 
 *  (\c ind_i1  must thus be in the range 0...t1.valence-1)  
 * @param ind_j1 [input] position of the second index \e j1 in the first 
 *      tensor for the contraction; one must have \c ind_i1 < \c ind_ j1
 * @param t2 [input] second tensor 
 * @param ind_i2 [input] position of the first index \e i2 in the second 
 *      tensor for the contraction 
 * @param ind_j2 [input] position of the second index \e j2 in the second 
 *      tensor for the contraction; one must have \c ind_i2 < \c ind_ j2
 * @param desaliasing [input] determines whether the products are performed
 *      with desaliasing or not  
 * @return tensor resulting of the contraction of the index \c ind_i1  
 *  of \c t1  with the index \c ind_i2  of \c t2  and of the 
 * contraction of the index \c ind_j1  
 *  of \c t1  with the index \c ind_j2  of \c t2 
 * NB: the types (\c COV  or \c CON ) of the indices \c ind_i1  and
 * \c ind_i2  (resp. \c ind_j1  and \c ind_j2 ) must be different. 
 */
Tensor contract(const Tensor& t1, int ind_i1, int ind_j1, 
                const Tensor& t2, int ind_i2, int ind_j2,
                bool desaliasing = false) ;


/** Contraction on two indices of a single tensor (trace). 
 *
 * @param t1 [input] tensor 
 * @param ind1 [input] first index of the tensor for the contraction, 
 *    obeying to the following convention : 
 *    \li \c ind1  = 0 : first index of the tensor 
 *    \li \c ind1  = 1 : second index of the tensor 
 *    \li and so on... 
 *  (\c ind1  must thus be in the range 0...t1.valence-1)  
 * @param ind2 [input] second index of the tensor for the contraction, with 
 *   the same convention as \c ind1  
 * @return tensor resulting of the contraction 
 * NB: the types (\c COV  or \c CON ) of the indices \c ind1  and
 * \c ind2  must be different. 
 */
Tensor contract(const Tensor& t1, int ind1, int ind2) ;


/** Maxima in each domain of the values of the tensor components
 * @param aa tensor
 * @param comment comment to be printed on \c ost  before the result
 *    (default: 0x0 = nothing printed)
 * @param ost output stream for a formatted output of the result
 * @return 2-D \c Tbl  of size the number of independent components
 *	times the number of domains, the elements \c (i,l) 
 *     of which are \c max(a(l)) , where \c a(l)  
 *      denotes symbolically the values of \c aa  
 *	   in domain no. \c l  and for component no.\c i . 
 */
Tbl max(const Tensor& aa, const char* comment = 0x0, ostream& ost = cout) ; 


/** Minima in each domain of the values of the tensor components
 * @param aa tensor
 * @param comment comment to be printed on \c ost  before the result
 *    (default: 0x0 = nothing printed)
 * @param ost output stream for a formatted output of the result
 * @return 2-D \c Tbl  of size the number of independent components
 *	times the number of domains, the elements \c (i,l) 
 *     of which are \c min(a(l)), where \c a(l)  
 *      denotes symbolically the values of \c aa  
 *	   in domain no. \c l  and for component no.\c i . 
 */
Tbl min(const Tensor& aa, const char* comment = 0x0, ostream& ost = cout) ; 

/** Maxima in each domain of the absolute values of the tensor components
 * @param aa tensor
 * @param comment comment to be printed on \c ost  before the result
 *    (default: 0x0 = nothing printed)
 * @param ost output stream for a formatted output of the result
 * @return 2-D \c Tbl  of size the number of independent components
 *	times the number of domains, the elements \c (i,l) 
 *     of which are \c max[abs(a(l))] , where \c a(l)  
 *      denotes symbolically the values of \c aa  
 *	   in domain no. \c l  and for component no.\c i . 
 */
Tbl maxabs(const Tensor& aa, const char* comment = 0x0, ostream& ost = cout, 
	   bool verb = true) ; 


/** Relative difference between two \c Tensor  (\f$L^1\f$ version).
 * @param aa first tensor
 * @param bb second tensor
 * @param comment comment to be printed on \c ost  before the result
 *    (default: 0x0 = nothing printed)
 * @param ost output stream for a formatted output of the result
 * @return 2-D \c Tbl  of size the number of independent components
 *	times the number of domains, the elements \c (i,l) 
 *     of which 
 *	   are \c norme[a(l)-b(l)]/norme[b(l)]  if \c b(l)!=0  and
 *	   \c norme[a(l)-b(l)]  if  \c b(l)=0 ,  where \c a(l)  and 
 *	   \c b(l)  denote symbolically the values of \c aa  and \c bb  
 *	   in domain no. \c l  and for component no.\c i . 
 */
Tbl diffrel(const Tensor& aa, const Tensor& bb, const char* comment = 0x0,
            ostream& ost = cout) ; 

/** Relative difference between two \c Tensor  (max version).
 * @param aa first tensor
 * @param bb second tensor
 * @param comment comment to be printed on \c ost  before the result
 *    (default: 0x0 = nothing printed)
 * @param ost output stream for a formatted output of the result
 * @return 2-D \c Tbl  of size the number of independent components
 *	times the number of domains, the elements \c (i,l) 
 *     of which 
 *	   are \c max[abs(a(l)-b(l))]/max[abs(b(l))]  if \c b(l)!=0  and
 *	   \c max[abs(a(l)-b(l))]  if  \c b(l)=0 , where \c a(l)  and 
 *	   \c b(l)  denote symbolically the values of \c aa  and \c bb  
 *	   in domain no. \c l  and for component no.\c i . 
 */
Tbl diffrelmax(const Tensor& aa, const Tensor& bb, const char* comment = 0x0,
               ostream& ost = cout) ; 

/** Central value of each component of a tensor. 
 * @param aa tensor
 * @param comment comment to be printed on \c ost
 *    (default: 0x0 = nothing printed)
 * @param ost output stream for a formatted output of the result; used
 *  only if \c comment != \c 0x0. 
 * @return 1-D \c Tbl  of size the number of independent components
 *  (\c aa.get_ncomp()), the elements of which are the central values 
 *  of the various components. 
 */
Tbl central_value(const Tensor& aa, const char* comment = 0x0, ostream& ost = cout) ; 

/** Maximum value of each component of a tensor over all the domains. 
 * @param aa tensor
 * @param l_excluded index of domain to be excluded from the computation:
 *   the default = -1 corresponds to no excluded domain
 * @param comment comment to be printed on \c ost
 *    (default: 0x0 = nothing printed)
 * @param ost output stream for a formatted output of the result; used
 *  only if \c comment != \c 0x0. 
 * @return 1-D \c Tbl  of size the number of independent components
 *  (\c aa.get_ncomp()), the elements of which are the maximum values 
 *  of the various components. 
 */
Tbl max_all_domains(const Tensor& aa, int l_excluded = -1, const char* comment = 0x0, 
    ostream& ost = cout) ; 


/** Minimum value of each component of a tensor over all the domains. 
 * @param aa tensor
 * @param l_excluded index of domain to be excluded from the computation:
 *   the default = -1 corresponds to no excluded domain
 * @param comment comment to be printed on \c ost
 *    (default: 0x0 = nothing printed)
 * @param ost output stream for a formatted output of the result; used
 *  only if \c comment != \c 0x0. 
 * @return 1-D \c Tbl  of size the number of independent components
 *  (\c aa.get_ncomp()), the elements of which are the minimum values 
 *  of the various components. 
 */
Tbl min_all_domains(const Tensor& aa, int l_excluded = -1, const char* comment = 0x0, 
    ostream& ost = cout) ; 

/** Maximum of the absolute value of each component of a tensor over all the domains. 
 * @param aa tensor
 * @param l_excluded index of domain to be excluded from the computation:
 *   the default = -1 corresponds to no excluded domain
 * @param comment comment to be printed on \c ost
 *    (default: 0x0 = nothing printed)
 * @param ost output stream for a formatted output of the result; used
 *  only if \c comment != \c 0x0. 
 * @return 1-D \c Tbl  of size the number of independent components
 *  (\c aa.get_ncomp()), the elements of which are the maximum of of the 
 *  absolute value of the various components. 
 */
Tbl maxabs_all_domains(const Tensor& aa, int l_excluded = -1, const char* comment = 0x0, 
    ostream& ost = cout, bool verb = true) ; 



/** @} */


/**
 * \defgroup tens_ari Tensor arithmetics
 * \ingroup (tensor)
 * @{
 */

Tensor operator+(const Tensor& ) ;			///< + Tensor
Tensor operator-(const Tensor& ) ;			///< \c - Tensor
Tensor operator+(const Tensor& a, const Tensor& b) ;	///< Tensor + Tensor

/// Tensor + Scalar. The \c Tensor  must be of valence 0.
Scalar operator+(const Tensor& a, const Scalar& b) ;	

/// Scalar + Tensor. The \c Tensor  must be of valence 0.
Scalar operator+(const Scalar& a, const Tensor& b) ;	

Tensor operator-(const Tensor& a, const Tensor& b) ;    ///< Tensor - Tensor

/// Tensor - Scalar. The \c Tensor  must be of valence 0.
Scalar operator-(const Tensor& a, const Scalar& b) ;	

/// Scalar - Tensor. The \c Tensor must be of valence 0.
Scalar operator-(const Scalar& a, const Tensor& b) ;	

Tensor operator*(const Scalar& a , const Tensor& b) ;   ///< Scalar * Tensor
Tensor operator*(const Tensor& a, const Scalar& b) ;    ///< Tensor * Scalar 
Tensor operator*(double , const Tensor&) ;              ///< double * Tensor
Tensor operator* (const Tensor&, double) ;              ///< Tensor * double
Tensor operator*(int, const Tensor &) ;                 ///< int* Tensor
Tensor operator*(const Tensor&, int) ;                 ///< Tensor * int
Tensor operator/(const Tensor&, const Scalar&) ;       ///< Tensor / Scalar
Tensor operator/(const Tensor&, double) ;              ///< Tensor / double
Tensor operator/(const Tensor&, int) ;                 ///< Tensor / int

    //@}

/**
 * @name Tensor_sym arithmetics
 */
    //@{
/** + Tensor_sym.  For efficiency reasons this function is 
 *  distinct from \c Tensor \c operator+(const Tensor\& ) .
 */
Tensor_sym operator+(const Tensor_sym&) ;  

/** - Tensor_sym.  For efficiency reasons this function is 
 *  distinct from \c Tensor \c operator+(const Tensor\& ).
 */
Tensor_sym operator-(const Tensor_sym&) ;  

/** Tensor_sym + Tensor_sym.  For efficiency reasons this function is 
 *  distinct
 *  from \c Tensor \c operator+(const Tensor\&, const Tensor\& ).
 */
Tensor_sym operator+(const Tensor_sym&, const Tensor_sym&) ;  

/** Tensor_sym - Tensor_sym. For efficiency reasons this function is 
 *  distinct
 *  from \c Tensor \c operator-(const Tensor\&, const Tensor\&) .
 */
Tensor_sym operator-(const Tensor_sym&, const Tensor_sym&) ;  

/** Scalar * Tensor_sym. For efficiency reasons this function is distinct
 *  from \c Tensor \c operator*(const Scalar\&, const Tensor\&) .
 */
Tensor_sym operator*(const Scalar& a, const Tensor_sym& b) ;   

/** Tensor_sym * Scalar. For efficiency reasons this function is distinct
 *  from \c Tensor \c operator*(const Tensor\&, const Scalar\&) .
 */
Tensor_sym operator*(const Tensor_sym& a, const Scalar& b) ;  

/** double * Tensor_sym. For efficiency reasons this function is distinct
 *  from \c Tensor \c operator*(double, const Tensor\&) .
 */
Tensor_sym operator*(double, const Tensor_sym&) ;  

/**  Tensor_sym * double. For efficiency reasons this function is distinct
 *  from \c Tensor \c operator*(const Tensor\&, double) .
 */
Tensor_sym operator*(const Tensor_sym&, double) ;  

/** int * Tensor_sym. For efficiency reasons this function is distinct
 *  from \c Tensor \c operator*(int, const Tensor\&) .
 */
Tensor_sym operator*(int, const Tensor_sym&) ;  

/**  Tensor_sym * int. For efficiency reasons this function is distinct
 *  from \c Tensor \c operator*(const Tensor\&, int) .
 */
Tensor_sym operator*(const Tensor_sym&, int) ;  

/** Tensor_sym / Scalar. For efficiency reasons this function is distinct
 *  from \c Tensor \c operator/(const Tensor\&, const Scalar\&) .
 */
Tensor_sym operator/(const Tensor_sym&, const Scalar&) ;  

/**  Tensor_sym / double. For efficiency reasons this function is distinct
 *  from \c Tensor \c operator/(const Tensor\&, double) .
 */
Tensor_sym operator/(const Tensor_sym&, double) ;  

/**  Tensor_sym / int. For efficiency reasons this function is distinct
 *  from \c Tensor \c operator/(const Tensor\&, int) .
 */
Tensor_sym operator/(const Tensor_sym&, int) ;  

/** @} */

}
#include "scalar.h"

#include "vector.h"

#include "sym_tensor.h"


#endif