This file is indexed.

/usr/include/lorene/C++/Include/time_slice.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
/*
 *  Definition of Lorene class Time_slice
 *
 */

/*
 *   Copyright (c) 2004 Eric Gourgoulhon, Jose Luis Jaramillo & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef __TIME_SLICE_H_ 
#define __TIME_SLICE_H_ 

/*
 * $Id: time_slice.h,v 1.32 2014/10/13 08:52:37 j_novak Exp $
 * $Log: time_slice.h,v $
 * Revision 1.32  2014/10/13 08:52:37  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.31  2012/02/06 12:59:07  j_novak
 * Correction of some errors.
 *
 * Revision 1.30  2010/10/20 07:58:09  j_novak
 * Better implementation of the explicit time-integration. Not fully-tested yet.
 *
 * Revision 1.29  2008/12/04 18:22:49  j_novak
 * Enhancement of the dzpuis treatment + various bug fixes.
 *
 * Revision 1.28  2008/12/02 15:02:21  j_novak
 * Implementation of the new constrained formalism, following Cordero et al. 2009
 * paper. The evolution eqs. are solved as a first-order system. Not tested yet!
 *
 * Revision 1.27  2008/08/19 06:41:59  j_novak
 * Minor modifications to avoid warnings with gcc 4.3. Most of them concern
 * cast-type operations, and constant strings that must be defined as const char*
 *
 * Revision 1.26  2007/11/06 14:47:06  j_novak
 * New constructor from a rotating star in Dirac gauge (class Star_rot_Dirac).
 * Evolution can take into account matter terms.
 *
 * Revision 1.25  2007/04/25 15:20:59  j_novak
 * Corrected an error in the initialization of tildeB in
 * Tslice_dirac_max::initial_dat_cts. + New method for solve_hij_AB.
 *
 * Revision 1.24  2007/03/21 14:51:48  j_novak
 * Introduction of potentials A and tilde(B) of h^{ij} into Tslice_dirac_max.
 *
 * Revision 1.23  2005/03/28 19:44:00  f_limousin
 * Function tgam() is now virtual.
 *
 * Revision 1.22  2004/06/24 20:36:07  e_gourgoulhon
 * Class Time_slice_conf: added method check_psi_dot.
 *
 * Revision 1.21  2004/06/14 20:46:35  e_gourgoulhon
 * Added argument method_poisson to Tslice_dirac_max::solve_hij.
 *
 * Revision 1.20  2004/05/31 20:28:20  e_gourgoulhon
 * -- Class Time_slice : added inline functions get_latest_j() and
 *    get_time()
 * -- Class Tslice_dirac_max: method hh_det_one takes now a time step
 *    as argument, to compute h^{ij} from khi and mu at an arbitrary
 *    time step and not only the latest one.
 *
 * Revision 1.19  2004/05/27 15:22:28  e_gourgoulhon
 * Added functions save and sauve, as well as constructors from file.
 *
 * Revision 1.18  2004/05/20 20:30:37  e_gourgoulhon
 * Added arguments check_mod and save_mod to method Tsclice_dirac_max::evolve.
 *
 * Revision 1.17  2004/05/17 19:52:16  e_gourgoulhon
 * -- Method initial_data_cts: added arguments graph_device and
 *    method_poisson_vect.
 * -- Method Tslice_dirac_max::solve_beta : added argument method
 * -- Method Tslice_dirac_max::solve_hij : added argument graph_device
 * -- Method Tslice_dirac_max::evolve : added arguments
 *    method_poisson_vect, nopause and graph_device.
 *
 * Revision 1.16  2004/05/12 15:16:25  e_gourgoulhon
 * Added #include "metric.h" before #include "evolution.h".
 *
 * Revision 1.15  2004/05/09 20:56:09  e_gourgoulhon
 * Added member adm_mass_evol and corresponding virtual method adm_mass().
 *
 * Revision 1.14  2004/05/06 15:23:10  e_gourgoulhon
 * initial_data_cts is know a virtual function of class Time_slice_conf
 * and is implemented also for class Tslice_dirac_max.
 *
 * Revision 1.13  2004/05/03 14:46:11  e_gourgoulhon
 * Class Tslice_dirac_max: -- changed prototype of method solve_hij
 *                         -- added new method evolve
 *
 * Revision 1.12  2004/04/30 14:36:15  j_novak
 * Added the method Tslice_dirac_max::solve_hij(...)
 * NOT READY YET!!!
 *
 * Revision 1.11  2004/04/30 10:51:38  e_gourgoulhon
 * Class Tslice_dirac_max: added methods solve_n, solve_q and solve_beta
 * for resolution of the elliptic part of Einstein equations.
 *
 * Revision 1.10  2004/04/29 17:07:27  e_gourgoulhon
 * Added argument pdt to Time_slice_conf::initial_data_cts.
 *
 * Revision 1.9  2004/04/08 16:42:11  e_gourgoulhon
 * Many changes:
 * -- class Time_slice_conf: added methods set_*, changed argument list of
 *    method initial_data_cts.
 * -- class Tslice_dirac_max: added methods set_* and  hh_det_one().
 *
 * Revision 1.8  2004/04/05 21:21:51  e_gourgoulhon
 * class Time_slice_conf: added method initial_data_cts (computation of
 *  initial data from conformally thin sandwich method).
 * classes  Time_slice_conf and Tslice_dirac_max: added constructor as
 *  standard time slice of Minkowski spacetime.
 *
 * Revision 1.7  2004/04/01 16:09:01  j_novak
 * Trace of K_ij is now member of Time_slice (it was member of Time_slice_conf).
 * Added new methods for checking 3+1 Einstein equations (preliminary).
 *
 * Revision 1.6  2004/03/30 14:00:30  j_novak
 * New class Tslide_dirac_max (first version).
 *
 * Revision 1.5  2004/03/29 11:58:53  e_gourgoulhon
 * Many modif. to class Time_slice_conf.
 * Minor modif. to class Time_slice.
 *
 * Revision 1.4  2004/03/28 21:33:14  e_gourgoulhon
 * Constructor  Time_slice::Time_slice(int depth_in) declared "explicit".
 *
 * Revision 1.3  2004/03/28 21:27:57  e_gourgoulhon
 * Class Time_slice: - renamed the Evolution_std with suffix "_evol".
 *                   - added protected constructor for derived classes
 * Added class Time_slice_conf.
 *
 * Revision 1.2  2004/03/26 13:33:02  j_novak
 * New methods for accessing/updating members (nn(), beta(), gam_uu(), k_uu(), ...)
 *
 * Revision 1.1  2004/03/24 14:56:18  e_gourgoulhon
 * First version
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/time_slice.h,v 1.32 2014/10/13 08:52:37 j_novak Exp $
 *
 */

#include "star_rot_dirac.h"
#include "evolution.h"

                    //---------------------------//
                    //      class Time_slice     //
                    //---------------------------//

namespace Lorene {
/**
 * Spacelike time slice of a 3+1 spacetime.
 * \ingroup (evol)
 * 
 */
class Time_slice {

    // Data : 
    // -----
    protected:
        /// Number of stored time slices
        int depth ; 
        
        /** Order of the finite-differences scheme for 
	 * the computation of time derivatives.
	 *
	 * This order is not constant and can be adjusted \e via
	 * \c set_scheme_order() .
	 */
        int scheme_order ; 
        
        /// Time step index of the latest slice
        int jtime ; 
        
        /// Time label of each slice
	Evolution_std<double> the_time ;
        
        /** Values at successive time steps of the covariant components of 
         * the induced metric \f$ \gamma_{ij} \f$
         */
	mutable Evolution_std<Sym_tensor> gam_dd_evol ; 
        
        /** Values at successive time steps of the contravariant components 
         * of the induced metric \f$ \gamma^{ij} \f$
         */        
	mutable Evolution_std<Sym_tensor> gam_uu_evol ; 

        /** Values at successive time steps of the covariant components 
         * of the extrinsic curvature tensor \f$ K_{ij} \f$
         */
	mutable Evolution_std<Sym_tensor> k_dd_evol ; 

        /** Values at successive time steps of the contravariant components 
         * of the extrinsic curvature tensor \f$ K^{ij} \f$
         */
	mutable Evolution_std<Sym_tensor> k_uu_evol ; 

        /// Values at successive time steps of the lapse function \e N 
	mutable Evolution_std<Scalar> n_evol ; 
        
        /// Values at successive time steps of the shift vector \f$ \beta^i \f$
	mutable Evolution_std<Vector> beta_evol ; 
        
        /** Values at successive time steps of the trace \e K of the 
         *  extrinsic curvature
         */        
	mutable Evolution_std<Scalar> trk_evol ; 

        /** ADM mass at each time step, since the creation of the slice.
         * At a given time step \c j, \c adm_mass_evol[j] is a 1-D \c Tbl
         *  of size the number \c nz of domains, containing the "ADM mass" 
         *  evaluated at the outer boundary of each domain. The true ADM
         *  mass is thus the last value, i.e. \c adm_mass_evol[j](nz-1). 
         *
         */
        mutable Evolution_full<Tbl> adm_mass_evol ; 

    // Derived data : 
    // ------------
    protected:
        /// Pointer on the induced metric at the current time step (\c jtime) 
	mutable Metric* p_gamma ;   

    // Constructors - Destructor
    // -------------------------
    public:
    
	/** General constructor (Hamiltonian-like). 
	 *
	 *  @param lapse_in lapse function \e N
	 *  @param shift_in shift vector
	 *  @param gamma_in induced metric (covariant or contravariant components) 
	 *  @param kk_in extrinsic curvature (covariant or contravariant components)
	 *  @param depth_in  number of stored time slices; this parameter is used
	 *                   to set the \c scheme_order member with \c scheme_order
	 *                   = \c depth_in - 1. \c scheme_order can be changed 
	 *                   afterwards by the method \c set_scheme_order(int).
	 */
	Time_slice(const Scalar& lapse_in, const Vector& shift_in,
		   const Sym_tensor& gamma_in, const Sym_tensor& kk_in,
		   int depth_in = 3) ; 
    
	/** General constructor (Lagrangian-like). 
	 *
	 *  @param lapse_in lapse function \e N
	 *  @param shift_in shift vector
	 *  @param gamma_in induced metric (covariant or contravariant components) 
	 *          at various time steps; note that the \c scheme_order member 
	 *          is set to \c gamma_in.size - 1. \c scheme_order can be changed 
	 *                   afterwards by the method \c set_scheme_order(int).
	 */
	Time_slice(const Scalar& lapse_in, const Vector& shift_in,
		   const Evolution_std<Sym_tensor>& gamma_in) ; 
    
	/** Constructor as standard time slice of flat spacetime (Minkowski). 
	 *
	 *  @param mp Mapping on which the various Lorene fields will be constructed
	 *  @param triad vector basis with respect to which the various tensor
	 *      components will be defined
	 *  @param depth_in  number of stored time slices; this parameter is used
	 *                   to set the \c scheme_order member with \c scheme_order
	 *                   = \c depth_in - 1. \c scheme_order can be changed 
	 *                   afterwards by the method \c set_scheme_order(int).
	 */
	Time_slice(const Map& mp, const Base_vect& triad, int depth_in = 3) ; 
	
	/** Constructor from binary file.
	 *
	 *  The binary file must have been created by method \c save.
	 *
	 *  @param mp Mapping on which the various Lorene fields will be constructed
	 *  @param triad vector basis with respect to which the various tensor
	 *      components will be defined
	 *  @param fich file containing the saved \c Time_slice
	 *  @param partial_read indicates whether the full object must
	 *      be read in file or whether the final construction is
	 *      devoted to a constructor of a derived class
	 *  @param depth_in  number of stored time slices; the given value must
	 *      coincide with that stored in the file.
	 */
	Time_slice(const Map& mp, const Base_vect& triad, FILE* fich, 
		   bool partial_read, int depth_in = 3) ; 
	
	Time_slice(const Time_slice& ) ;   ///< Copy constructor
	
    protected:
	/** Special constructor for derived classes.
	 *
	 */
	explicit Time_slice(int depth_in) ; 
	
    public:
	virtual ~Time_slice() ;			///< Destructor
 

    // Memory management
    // -----------------
    protected:
	    
	/// Deletes all the derived quantities
	virtual void del_deriv() const ; 
	
	/// Sets to \c 0x0 all the pointers on derived quantities
	void set_der_0x0() const ; 


    // Mutators / assignment
    // ---------------------
    public:
	/// Assignment to another \c Time_slice
	void operator=(const Time_slice&) ;

	/// Sets the order of the finite-differences scheme.
	void set_scheme_order(int ord) { 
	    assert ((0<= ord)&&(ord < 4)) ;
	  scheme_order = ord ; } ; 
	
    // Accessors
    // ---------
    public:

	/// Gets the order of the finite-differences scheme.
	int get_scheme_order() const { return scheme_order ; } ;
        
        /// Gets the latest value of time step index
        int get_latest_j() const {return jtime; } ;
        
        /// Gets the time coordinate \e t at successive time steps
        const Evolution_std<double>& get_time() const {return the_time; } ; 
	
	/// Lapse function \e N at the current time step (\c jtime )
	virtual const Scalar& nn() const ;
	
	/// shift vector \f$ \beta^i \f$ at the current time step (\c jtime )
	virtual const Vector& beta() const ;
	
	/// Induced metric \f$ \mathbf{\gamma} \f$ at the current time step (\c jtime )
	const Metric& gam() const ;
	
	/** Induced metric (covariant components \f$ \gamma_{ij} \f$) 
	 * at the current time step (\c jtime )
	 */
	virtual const Sym_tensor& gam_dd() const ;
	
	/** Induced metric (contravariant components \f$ \gamma^{ij} \f$) 
	 * at the current time step (\c jtime )
	 */
	virtual const Sym_tensor& gam_uu() const ;
	
	/** Extrinsic curvature tensor (covariant components \f$ K_{ij} \f$) 
	 * at the current time step (\c jtime )
	 */
	virtual const Sym_tensor& k_dd() const ;
	
	/** Extrinsic curvature tensor (contravariant components \f$ K^{ij} \f$) 
	 * at the current time step (\c jtime )
	 */
	virtual const Sym_tensor& k_uu() const ;
	
        /** Trace \e K of the extrinsic curvature 
         *  at the current time step (\c jtime )
         */        
        virtual const Scalar& trk() const ; 
        
	
    // Computational functions
    // -----------------------
    public:
	/** 
	 *  Checks the level at which the hamiltonian constraint is verified.
	 * 
	 * \f[
	 * R + K^2 - K_{ij}K^{ij} = 16\pi E 
	 * \f]
	 * @param energy_density : a pointer on the energy density \e E
	 * measured by the Eulerian observer of 4-velocity 
	 * \f$\mbox{\boldmath{$n $}}\f$ ; if this
	 * is the null pointer, it is assumed that \e E = 0 (vacuum).
	 * @param ost : output stream for a formatted output of the result
	 * @return Tbl  of size the number of domains containing the 
	 * absolute ( if \e E = 0 ) or the relative (in presence of matter)
	 * error in max version.
	 */
	 Tbl check_hamiltonian_constraint(const Scalar* energy_density = 0x0,
					  ostream& ost = cout, bool verb=true) const ;
	
	/** 
	 *  Checks the level at which the momentum constraints are verified.
	 * 
	 * \f[
	 * D_j K_i^{\ j} - D_i K = 8 \pi J_i
	 * \f]
	 * @param momentum_density : a pointer on the momentum density 
	 * \f$ J_i \f$ measured by the Eulerian observer of 4-velocity 
	 * \f$\mbox{\boldmath{$n $}}\f$ ; if this is the null pointer, 
	 * it is assumed that\f$ J_i \f$ = 0 (vacuum).
	 * @param ost : output stream for a formatted output of the result
	 * @return Tbl 2D of size the number of domains times 3 
	 * (components)containing the absolute ( if \f$ J_i \f$ = 0 ) 
	 * or the relative (in presence of matter) error in max version.
	 */
	 Tbl check_momentum_constraint(const Vector* momentum_density = 0x0,
				       ostream& ost = cout, bool verb=true) const ;
	
	/** 
	 *  Checks the level at which the dynamical equations are verified.
	 * 
	 * \f[
	 * 	\frac{\partial K_{ij}}{\partial t} - 
	 * \pounds_{\mbox{\boldmath{$\beta $}}} K_{ij} =  - D_i D_j N 
	 *	+ N \left[ R_{ij} - 2 K_{ik} K^k_{\ j} + K K_{ij} 
	 *	+ 4\pi \left( (S-E)\gamma_{ij} - 2 S_{ij} \right) 
	 *	\right]
	 * \f]
	 * @param strain_tensor : a pointer on the strain_tensor 
	 * \f$ S_{ij} \f$ measured by the Eulerian observer of 4-velocity 
	 * \f$\mbox{\boldmath{$n $}}\f$ ; if this is the null pointer, 
	 * it is assumed that \f$ S_{ij} \f$ = 0 (vacuum).
	 * @param energy_density : a pointer on the energy density \e E
	 * (see \c check_hamiltonian_constraint)
	 * @param ost : output stream for a formatted output of the result
	 * @return Tbl 3D of size the number of domains times 3 times 3
	 * (corresponding to the rank-2 tensor, with the symmetry in the 
	 * components) containing the absolute ( if  \f$ J_i \f$ = 0 ) or 
	 * the relative (in presence of matter) error in max version.
	 */
	 Tbl check_dynamical_equations(const Sym_tensor* strain_tensor = 0x0,
				       const Scalar* energy_density = 0x0,
				       ostream& ost = cout, bool verb=true) const  ; 
	
        /** Returns the ADM mass (geometrical units) at the current step.
         * Moreover this method updates \c adm_mass_evol if
         * necessary. 
         */
        virtual double adm_mass() const ; 
        
    // Outputs
    // -------
    protected:
	/// Operator >> (virtual function called by the operator<<). 
	virtual ostream& operator>>(ostream& ) const ; 
	
    /// Display
	friend ostream& operator<<(ostream& , const Time_slice& ) ;	

    public:
	/** Saves in a binary file.
	 *  The saved data is sufficient to restore the whole time slice
	 *  via the constructor from file. 
	 *  @param rootname root for the file name; the current time step index
	 *      will be appended to it. 
	 */
	void save(const char* rootname) const ; 
    
    protected:
	/** Total or partial saves in a binary file.
	 *  This protected method is to be called either from public method 
	 *  \c save or from method \c sauve of a derived class. 
	 *  
	 *  @param fich binary file 
	 *  @param partial_save indicates whether the whole object must be
	 *      saved.
	 */
	virtual void sauve(FILE* fich, bool partial_save) const ; 

};

ostream& operator<<(ostream& , const Time_slice& ) ;	



                    //---------------------------//
                    //   class Time_slice_conf   //
                    //---------------------------//

/**
 * Spacelike time slice of a 3+1 spacetime with conformal decomposition.
 * \ingroup (evol)
 * 
 */
class Time_slice_conf : public Time_slice {

    // Data : 
    // -----
    protected: 
    
        /** Pointer on the flat metric \f$ f_{ij} \f$ with respect to
         * which the conformal decomposition is performed
         */
        const Metric_flat& ff ;  

        /** Values at successive time steps of the conformal factor 
         * \f$ \Psi \f$ relating the
         * physical metric \f$ \gamma_{ij} \f$ to the conformal one:
         * \f$ \gamma_{ij} = \Psi^4 \tilde\gamma_{ij} \f$.
         * \f$ \Psi \f$ is defined by
         *  \f[ \Psi := \left( \frac{\det\gamma_{ij}}{\det f_{ij}} 
         *      \right) ^{1/12} \f] 
         */
	mutable Evolution_std<Scalar> psi_evol ; 
        
        /** Values at successive time steps of the factor 
         * \f$ N\Psi \f$.
         */
	mutable Evolution_std<Scalar> npsi_evol ; 
        
        
        /** Values at successive time steps of the components \f$ h^{ij} \f$. 
         * It is the deviation of the conformal metric \f$ \tilde\gamma^{ij} \f$ from 
         * the flat metric \f$ f^{ij} \f$: 
         * \f$\tilde\gamma^{ij} = f^{ij} + h^{ij} \f$.
         */        
	mutable Evolution_std<Sym_tensor> hh_evol ; 

        /** Values at successive time steps of the components \f$ \hat{A}^{ij} \f$.
         * It is the conformal representation of the traceless part
         * of the extrinsic curvature:
         * \f$ \hat{A}^{ij} = \Psi^{10} \left( K^{ij} - \frac{1}{3} K \gamma^{ij} \right) \f$.
	 * One can uniquely (up to the boundary conditions) define the decomposition:
	 * \f$ \hat{A}^{ij} = {\cal D}^i X^j + {\cal D}^j X^i - \frac{2}{3} 
	 * {\cal D}_k X^k f^{ij} + \hat{A}^{ij}_{TT} \f$, where \f$ X^i \f$ 
	 * represents the longitudinal part and \f$ \hat{A}^{ij}_{TT} \f$ is 
	 * the transverse-traceless part.
         */        
	mutable Evolution_std<Sym_tensor> hata_evol ; 

	/** Potential \e A associated with the symmetric tensor 
	 * \f$ \hat{A}^{ij}_{TT} \f$. (see documentation of \c Sym_tensor::p_aaa).
	 */
	mutable Evolution_std<Scalar> A_hata_evol ;
        
	/** Potential \f$ \tilde{B} \f$ associated with the symmetric tensor 
	 * \f$ \hat{A}^{ij}_{TT} \f$. (see documentation of \c Sym_tensor::p_tilde_b).
	 */
	mutable Evolution_std<Scalar> B_hata_evol ;
        
    // Derived data : 
    // ------------
    protected:
        /** Pointer on the conformal metric \f$ \tilde\gamma_{ij} \f$
         * at the current time step (\c jtime)
         */
	    mutable Metric* p_tgamma ; 
        
        /// Pointer on the factor \f$ \Psi^4 \f$ at the current time step (\c jtime)
	    mutable Scalar* p_psi4 ; 
        
        /// Pointer on the logarithm of \f$ \Psi \f$ at the current time step (\c jtime)
	    mutable Scalar* p_ln_psi ; 
        
        /** Pointer on the vector \f$ H^i = {\cal D}_j \tilde\gamma^{ij} \f$ 
         * (which vanishes in Dirac gauge), at the current time step (\c jtime).
         */
        mutable Vector* p_hdirac ; 

	/** Pointer on the vector \f$ X^i \f$ representing the longitudinal 
	 * part of \f$ \hat{A}^{ij} \f$.
	 * (see the documentation of \c hata_evol)
	 */
	mutable Vector* p_vec_X ;

    // Constructors - Destructor
    // -------------------------
    public:
    
    /** Constructor from conformal decomposition.
     *
     *  @param lapse_in lapse function \e N
     *  @param shift_in shift vector
     *  @param ff_in reference flat metric with respect to which the
     *           conformal decomposition is performed
     *  @param psi_in conformal factor \f$\Psi\f$ relating the
     *       physical metric \f$ \gamma_{ij} \f$ to the conformal one:
     *      \f$ \gamma_{ij} = \Psi^4 \tilde\gamma_{ij} \f$
     *  @param hh_in deviation \f$ h^{ij} \f$
     *      of the conformal metric \f$ \tilde\gamma^{ij} \f$ from 
     *      the flat metric \f$ f^{ij} \f$: 
     *      \f$\tilde\gamma^{ij} = f^{ij} + h^{ij} \f$.
     *      \f$ h^{ij} \f$ must be such that 
     *      \f$\det\tilde\gamma^{ij} = f^{-1} \f$.
     *  @param hata_in conformal representation \f$ A^{ij} \f$
     *      of the traceless part of the extrinsic curvature:
     *   \f$ \hat{A}^{ij} = \Psi^{10} \left( K^{ij} - \frac{1}{3} K \gamma^{ij} \right) \f$
     *  @param trk_in trace \e K of the extrinsic curvature 
     *  @param depth_in  number of stored time slices; this parameter is used
     *                   to set the \c scheme_order member with \c scheme_order
     *                   = \c depth_in - 1. \c scheme_order can be changed 
     *                   afterwards by the method \c set_scheme_order(int).
     */
    Time_slice_conf(const Scalar& lapse_in, const Vector& shift_in,
            const Metric_flat& ff_in, const Scalar& psi_in, 
            const Sym_tensor& hh_in, const Sym_tensor& hata_in, 
            const Scalar& trk_in, int depth_in = 3) ; 
    
    
    /** Constructor from physical metric.
     *  The conformal decomposition is performed by the constructor. 
     *
     *  @param lapse_in lapse function \e N
     *  @param shift_in shift vector
     *  @param gamma_in induced metric (covariant or contravariant components) 
     *  @param kk_in extrinsic curvature (covariant or contravariant components)
     *  @param ff_in reference flat metric with respect to which the
     *           conformal decomposition is performed
     *  @param depth_in  number of stored time slices; this parameter is used
     *                   to set the \c scheme_order member with \c scheme_order
     *                   = \c depth_in - 1. \c scheme_order can be changed 
     *                   afterwards by the method \c set_scheme_order(int).
     */
    Time_slice_conf(const Scalar& lapse_in, const Vector& shift_in,
               const Sym_tensor& gamma_in, const Sym_tensor& kk_in,
               const Metric_flat& ff_in, int depth_in = 3) ; 
               
    /** Constructor as standard time slice of flat spacetime (Minkowski). 
     *
     *  @param mp Mapping on which the various Lorene fields will be constructed
     *  @param triad vector basis with respect to which the various tensor
     *      components will be defined
     *  @param ff_in reference flat metric with respect to which the
     *           conformal decomposition is performed
     *  @param depth_in  number of stored time slices; this parameter is used
     *                   to set the \c scheme_order member with \c scheme_order
     *                   = \c depth_in - 1. \c scheme_order can be changed 
     *                   afterwards by the method \c set_scheme_order(int).
     */
    Time_slice_conf(const Map& mp, const Base_vect& triad, 
                    const Metric_flat& ff_in, int depth_in = 3) ; 
    
    /** Constructor from binary file.
     *
     *  The binary file must have been created by method \c save.
     *
     *  @param mp Mapping on which the various Lorene fields will be constructed
     *  @param triad vector basis with respect to which the various tensor
     *      components will be defined
     *  @param ff_in reference flat metric with respect to which the
     *           conformal decomposition is performed
     *  @param fich file containing the saved \c Time_slice_conf
     *  @param partial_read indicates whether the full object must
     *      be read in file or whether the final construction is
     *      devoted to a constructor of a derived class
     *  @param depth_in  number of stored time slices; the given must
     *      coincide with that stored in the file.
     */
    Time_slice_conf(const Map& mp, const Base_vect& triad, 
                    const Metric_flat& ff_in, FILE* fich, 
                    bool partial_read, int depth_in = 3) ; 

    Time_slice_conf(const Time_slice_conf& ) ;	///< Copy constructor

    virtual ~Time_slice_conf() ;			///< Destructor
 

    // Memory management
    // -----------------
    protected:
	    
	/// Deletes all the derived quantities
	virtual void del_deriv() const ; 
	
	/// Sets to \c 0x0 all the pointers on derived quantities
	void set_der_0x0() const ; 


    // Mutators / assignment
    // ---------------------
    public:
	/// Assignment to another \c Time_slice_conf
	void operator=(const Time_slice_conf&) ;

	/// Assignment to a \c Time_slice
	void operator=(const Time_slice&) ;
        
        /** Sets the conformal factor \f$ \Psi \f$ relating the
         * physical metric \f$ \gamma_{ij} \f$ to the conformal one:
         * \f$ \gamma_{ij} = \Psi^4 \tilde\gamma_{ij} \f$. 
         * \f$ \Psi \f$ is defined by
         *  \f[ \Psi := \left( \frac{\det\gamma_{ij}}{\det f_{ij}} 
         *      \right) ^{1/12} \f] 
         * Sets the value at the current time step (\c jtime ) and
         * deletes the value of \f$N\Psi\f$.
         *
         */
        virtual void set_psi_del_npsi(const Scalar& psi_in) ; 
        
        /** Sets the conformal factor \f$ \Psi \f$ relating the
         * physical metric \f$ \gamma_{ij} \f$ to the conformal one:
         * \f$ \gamma_{ij} = \Psi^4 \tilde\gamma_{ij} \f$. 
         * \f$ \Psi \f$ is defined by
         *  \f[ \Psi := \left( \frac{\det\gamma_{ij}}{\det f_{ij}} 
         *      \right) ^{1/12} \f] 
         * Sets the value at the current time step (\c jtime ) and
         * deletes the value of \e N.
         *
         */
        virtual void set_psi_del_n(const Scalar& psi_in) ; 
        
        /** Sets the factor \f$ N\Psi \f$ at the 
         *  current time step (\c jtime ) and deletes the value
         *  of \f$\Psi\f$.
         */
        virtual void set_npsi_del_psi(const Scalar& npsi_in) ; 
        
        /** Sets the factor \f$ N\Psi \f$ at the 
         *  current time step (\c jtime ) and deletes the value
         *  of \e N.
         */
        virtual void set_npsi_del_n(const Scalar& npsi_in) ; 
        
        /** Sets the deviation \f$ h^{ij} \f$ 
         * of the conformal metric \f$ \tilde\gamma^{ij} \f$ from 
         * the flat metric \f$ f^{ij} \f$: 
         * \f$\tilde\gamma^{ij} = f^{ij} + h^{ij} \f$.
         *      \f$ h^{ij} \f$ must be such that 
         *      \f$\det\tilde\gamma^{ij} = f^{-1} \f$.
         * Sets the value at the current time step (\c jtime ).
         */        
        virtual void set_hh(const Sym_tensor& hh_in) ; 

        /** Sets the conformal representation \f$ \hat{A}{ij} \f$ of the traceless part
         * of the extrinsic curvature:
         * \f$ \hat{A}^{ij} = \Psi^{10} \left( K^{ij} - \frac{1}{3} K \gamma^{ij} \right) \f$.
         * Sets the value at the current time step (\c jtime ), and updates the
	 * potentials \c A_hata_evol, \c B_hata_evol and \c p_vec_X accordingly.
         */        
        virtual void set_hata(const Sym_tensor& hata_in) ; 

	/** Sets the TT part of \f$ \hat{A}^{ij} \f$ (see member \c hata_evol ).
	 * Sets the value at current time-step (\c jtime ) and updates the potentials
	 * \e A and \f$ \tilde{B} \f$. */
	virtual void set_hata_TT(const Sym_tensor_tt& hata_tt) ;

        /** Sets the conformal representation \f$ \hat{A}{ij} \f$ of the traceless part
         * of the extrinsic curvature from its potentials \e A, \f$ \tilde{B} \f$
	 * and \f$ X^i \f$.
         * These potentials must be up-to-date. It sets the value at the current 
	 * time step (\c jtime ). 
         */        
	virtual void set_hata_from_XAB(Param* par_bc=0x0, Param* par_mat=0x0) ;

    // Accessors
    // ---------
    public:

        // Virtual functions from base class Time_slice:
        // ---------------------------------------------

	/// Lapse function \e N at the current time step (\c jtime )
	virtual const Scalar& nn() const ;
	
	/** Induced metric (covariant components \f$ \gamma_{ij} \f$) 
	 * at the current time step (\c jtime )
	 */
	virtual const Sym_tensor& gam_dd() const ;
	
	/** Induced metric (contravariant components \f$ \gamma^{ij} \f$) 
	 * at the current time step (\c jtime )
	 */
	virtual const Sym_tensor& gam_uu() const ;
	
	/** Extrinsic curvature tensor (covariant components \f$ K_{ij} \f$) 
	 * at the current time step (\c jtime )
	 */
	virtual const Sym_tensor& k_dd() const ;
	
	/** Extrinsic curvature tensor (contravariant components \f$ K^{ij} \f$) 
	 * at the current time step (\c jtime )
	 */
	virtual const Sym_tensor& k_uu() const ;
	
        // Virtual functions from this class:
        // ----------------------------------

	/** Returns the potential \e A of \f$ \hat{A}^{ij} \f$.
	 * See the documentation of \c Sym_tensor for details.
	 * Returns the value at the current time step (\c jtime ).
	 */
	virtual const Scalar& A_hata() const ; 
	
	/** Returns the potential \f$\tilde{B}\f$ of \f$ \hat{A}^{ij} \f$.
	 * See the documentation of \c Sym_tensor_tt for details.
	 * Returns the value at the current time step (\c jtime ).
	 */
	virtual const Scalar& B_hata() const ;
    
        /** Conformal factor \f$ \Psi \f$ relating the
         * physical metric \f$ \gamma_{ij} \f$ to the conformal one:
         * \f$ \gamma_{ij} = \Psi^4 \tilde\gamma_{ij} \f$. 
         * \f$ \Psi \f$ is defined by
         *  \f[ \Psi := \left( \frac{\det\gamma_{ij}}{\det f_{ij}} \right) ^{1/12} \f] 
         * Returns the value at the current time step (\c jtime ).
         */
        virtual const Scalar& psi() const ; 
        
        /// Factor \f$ \Psi^4 \f$ at the current time step (\c jtime ).
	    const Scalar& psi4() const ; 
        
        /// Logarithm of \f$ \Psi \f$ at the current time step (\c jtime ).
	    const Scalar& ln_psi() const ; 
        
        /** Factor \f$ N\Psi \f$ at the current time step (\c jtime ).
         */
        virtual const Scalar& npsi() const ; 
        
        /** Conformal metric 
         * \f$ \tilde\gamma_{ij} = \Psi^{-4} \gamma_{ij} \f$
         * Returns the value at the current time step (\c jtime ).
         */        
        virtual const Metric& tgam() const ; 

        /** Deviation \f$ h^{ij} \f$ 
         * of the conformal metric \f$ \tilde\gamma^{ij} \f$ from 
         * the flat metric \f$ f^{ij} \f$: 
         * \f$\tilde\gamma^{ij} = f^{ij} + h^{ij} \f$.
         * Returns the value at the current time step (\c jtime ).
         */        
        virtual const Sym_tensor& hh(Param* = 0x0, Param* = 0x0) const ; 

        /** Conformal representation \f$ \hat{A}^{ij} \f$ of the traceless part
         * of the extrinsic curvature:
         * \f$ \hat{A}^{ij} = \Psi^{10} \left( K^{ij} - \frac{1}{3} K \gamma^{ij} \right) \f$.
         * Returns the value at the current time step (\c jtime ).
         */        
        virtual const Sym_tensor& hata() const ; 

        /** Conformal representation \f$ A^{ij} \f$ of the traceless part
         * of the extrinsic curvature:
         * \f$ A^{ij} = \Psi^4 \left( K^{ij} - \frac{1}{3} K \gamma^{ij} \right) \f$.
         * Returns the value at the current time step (\c jtime ).
         */        
        virtual Sym_tensor aa() const ; 

        /** Trace \e K of the extrinsic curvature 
         *  at the current time step (\c jtime )
         */        
        virtual const Scalar& trk() const ; 
        
        /** Vector \f$ H^i = {\cal D}_j \tilde\gamma^{ij} \f$ 
         * which vanishes in Dirac gauge.
         */
        virtual const Vector& hdirac() const ;

	/** Vector \f$ X^i \f$ representing the longitudinal part of 
	 * \f$ \hat{A}^{ij} \f$.(see the documentation of \c hata_evol)
	 */
        virtual const Vector& vec_X(int method_poisson=6) const ;
        
    // Computational methods
    // ---------------------
    public:
	/** Computes the vector \f$ X^i \f$ from the conformally-rescaled 
	 * momentum \f$ \hat{S}^i = \Psi^6 S^i \f$, using the momentum constraint.
	 */
	void compute_X_from_momentum_constraint
	    (const Vector& hat_S, const Sym_tensor_tt& hata_tt, 
	      int iter_max = 200, double precis = 1.e-12,
	     double relax = 0.8, int methode_poisson = 6) ;

	/** Sets the potentials \e A and \f$\tilde{B}\f$
         * of the TT part \f$ \hat{A}^{ij}
	 * (see the documentation of \c Sym_tensor for details).
         * Sets the value at the current time step (\c jtime ).
	 */
	virtual void set_AB_hata(const Scalar& A_in, const Scalar& B_in) ; 

        /** Computes valid initial data by solving the constraint 
         *  equations in the conformal thin-sandwich approach.
         *
         *  @param uu value of 
         *    \f$ {\tilde u}^{ij} = \partial h^{ij} /\partial t \f$ 
         *                  (freely specifiable data).
         *  This quantity must be trace-free with respect to the conformal
         *  metric \f$\tilde\gamma_{ij}\f$, reflecting the unimodular 
         *  character of \f$\tilde\gamma_{ij}\f$.
         *  @param trk_in value of \f$ K = K_i^{\ i} \f$ 
         *      (freely specifiable data)
         *  @param trk_point value of \f$ \partial K / \partial t \f$ 
         *      (freely specifiable data)
         *  @param pdt time step, to be used in order to fill \c depth
         *      slices
         *  @param precis convergence threshold required to stop the 
         *          iteration
         *  @param method_poisson_vect method to be used for solving 
         *      vector Poisson equation (for the shift), see 
         *      \c Vector::poisson(double, const Metric_flat&, int) const.  
         *  @param graph_device  name of type of graphical device: 0x0 
         *      (default value) will result in interactive choice; 
         *      "/xwin" in X-Window display and "/n" in no output.
         *  @param ener_dens matter energy density \e E as measured by the 
         *      Eulerian observer; this quantity is passed as a pointer,
         *      the null value of which (default) meaning \e E=0.
         *  @param mom_dens matter momentum density \e J as measured by the 
         *      Eulerian observer; this quantity is passed as a pointer,
         *      the null value of which (default) meaning \e J=0.
         *  @param trace_stress trace of the matter stress \e S as measured 
         *      by the Eulerian observer; this quantity is passed as a pointer,
         *      the null value of which (default) meaning \e S=0.
         */
         virtual void initial_data_cts(const Sym_tensor& uu, const Scalar& trk_in, 
                const Scalar& trk_point, double pdt, double precis = 1.e-12,
                int method_poisson_vect = 6, const char* graph_device = 0x0, 
                const Scalar* ener_dens = 0x0, const Vector* mom_dens = 0x0, 
                const Scalar* trace_stress = 0x0 ) ; 
        
        /** Returns the ADM mass (geometrical units) at the current step.
         * Moreover this method updates \c adm_mass_evol if
         * necessary. 
         */
        virtual double adm_mass() const ; 
        
        /** Checks the \f$\frac{\partial}{\partial t} \ln\Psi \f$ relation.
         *  @param tlnpsi_dot [output] maximun value in each domain of 
         *      \f$ \left| \frac{\partial}{\partial t} \ln\Psi \right| \f$
         *  @param tdiff [output] maximum value in each domain of  \f$ \left| 
         *          \frac{\partial}{\partial t} \ln\Psi -
         *          \beta^i {\cal D}_i \ln \Psi - \frac{1}{6} ( 
         *          {\cal D}_i \beta^i - N K) \right| \f$
         *  @param tdiff_rel [output] relative error on the above relation
         *      in each domain.
         *
         */
        void check_psi_dot(Tbl& tlnpsi_dot, Tbl& tdiff, Tbl& tdiff_rel) const ; 
        
    // Outputs
    // -------
    protected:
    /// Operator >> (virtual function called by the operator<<). 
    virtual ostream& operator>>(ostream& ) const ; 
	
    /** Total or partial saves in a binary file.
     *  This protected method is to be called either from public method 
     *  \c save or from method \c sauve of a derived class. 
     *  
     *  @param fich binary file 
     *  @param partial_save indicates whether the whole object must be
     *      saved.
     */
    virtual void sauve(FILE* fich, bool partial_save) const ; 

} ;	
                    //----------------------------//
                    //   class Tslice_dirac_max   //
                    //----------------------------//

/**
 * Spacelike time slice of a 3+1 spacetime with conformal decomposition
 * in the maximal slicing and Dirac gauge.
 * \ingroup (evol)
 * 
 */
class Tslice_dirac_max : public Time_slice_conf {

  // Data : 
  // -----
 protected: 
  /** The \e A potential of \f$ \bar{h}^{ij} \f$.
   *
   * (see the documentation of \c Sym_tensor::p_aaa for details).
   */
  mutable Evolution_std<Scalar> A_hh_evol ;
  
  /** The \f$\tilde{B} \f$ potential of \f$ \bar{h}^{ij} \f$.
   *
   * (see the documentation of \c Sym_tensor::p_tilde_b for details).
   */
  mutable Evolution_std<Scalar> B_hh_evol ;

  /** The \e A potential of the source of equation for \f$ \bar{h}^{ij} \f$.
   *
   * (see the documentation of \c Sym_tensor::p_aaa for details).
   */
  mutable Evolution_std<Scalar> source_A_hh_evol ;
  
  /** The \f$\tilde{B} \f$ potential of the source of equation for \f$ \bar{h}^{ij} \f$.
   *
   * (see the documentation of \c Sym_tensor::p_tilde_b for details).
   */
  mutable Evolution_std<Scalar> source_B_hh_evol ;

  /** The potential \e A of the source of equation for \f$ \hat{A}^{ij} \f$.
   *
   * (see the documentation of \c Sym_tensor::p_aaa for details).
   */
  mutable Evolution_std<Scalar> source_A_hata_evol ;
  
  /** The potential \f$\tilde{B}\f$ of the source of equation for \f$ \hat{A}^{ij} \f$.
   *
   * (see the documentation of \c Sym_tensor::p_tilde_b for details).
   */
  mutable Evolution_std<Scalar> source_B_hata_evol ;

  /// The trace, with respect to the flat metric \c ff , of \f$ h^{ij} \f$.
  mutable Evolution_std<Scalar> trh_evol ;


    // Constructors - Destructor
    // -------------------------
    public:
    /** Constructor from conformal decomposition.
     *
     *  @param lapse_in lapse function \e N
     *  @param shift_in shift vector
     *  @param ff_in reference flat metric with respect to which the
     *           conformal decomposition is performed
     *  @param psi_in conformal factor \f$\Psi\f$ relating the
     *       physical metric \f$ \gamma_{ij} \f$ to the conformal one:
     *      \f$ \gamma_{ij} = \Psi^4 \tilde\gamma_{ij} \f$
     *  @param hh_in deviation \f$ h^{ij} \f$
     *      of the conformal metric \f$ \tilde\gamma^{ij} \f$ from 
     *      the flat metric \f$ f^{ij} \f$: 
     *      \f$\tilde\gamma^{ij} = f^{ij} + h^{ij} \f$.
     *      \f$ h^{ij} \f$ must be such that 
     *      \f$\det\tilde\gamma^{ij} = f^{-1} \f$.
     *  @param hata_in conformal representation \f$ \hat{A}^{ij} \f$
     *      of the traceless part of the extrinsic curvature:
     *      \f$ \hat{A}^{ij} = \Psi^{10} \left( K^{ij} - \frac{1}{3} K \gamma^{ij} \right) \f$,
     *       with \e K = 0 in the present case
     *  @param depth_in  number of stored time slices; this parameter is used
     *                   to set the \c scheme_order member with \c scheme_order
     *                   = \c depth_in - 1. \c scheme_order can be changed 
     *                   afterwards by the method \c set_scheme_order(int).
     */
	Tslice_dirac_max(const Scalar& lapse_in, const Vector& shift_in,
            const Metric_flat& ff_in, const Scalar& psi_in, 
            const Sym_tensor_trans& hh_in, const Sym_tensor& hata_in, 
            int depth_in = 3) ;	
	
    /** Constructor as standard time slice of flat spacetime (Minkowski). 
     *
     *  @param mp Mapping on which the various Lorene fields will be constructed
     *  @param triad vector basis with respect to which the various tensor
     *      components will be defined
     *  @param ff_in reference flat metric with respect to which the
     *           conformal decomposition is performed
     *  @param depth_in  number of stored time slices; this parameter is used
     *                   to set the \c scheme_order member with \c scheme_order
     *                   = \c depth_in - 1. \c scheme_order can be changed 
     *                   afterwards by the method \c set_scheme_order(int).
     */
    Tslice_dirac_max(const Map& mp, const Base_vect& triad, 
                     const Metric_flat& ff_in, int depth_in = 3) ; 
    
    /** Constructor from binary file.
     *
     *  The binary file must have been created by method \c save.
     *
     *  @param mp Mapping on which the various Lorene fields will be constructed
     *  @param triad vector basis with respect to which the various tensor
     *      components will be defined
     *  @param ff_in reference flat metric with respect to which the
     *           conformal decomposition is performed
     *  @param fich file containing the saved \c Tslice_dirac_max
     *  @param partial_read indicates whether the full object must
     *      be read in file or whether the final construction is
     *      devoted to a constructor of a derived class
     *  @param depth_in  number of stored time slices; the given must
     *      coincide with that stored in the file.
     */
    Tslice_dirac_max(const Map& mp, const Base_vect& triad, 
                     const Metric_flat& ff_in, FILE* fich, 
                     bool partial_read, int depth_in = 3) ; 

    /// Construnction of a stationary slice from a rotating star
    Tslice_dirac_max(const Star_rot_Dirac& star, double pdt, int depth_in = 3) ;

    Tslice_dirac_max(const Tslice_dirac_max& ) ;   ///< Copy constructor

    virtual ~Tslice_dirac_max() ;			///< Destructor
 

    // Mutators / assignment
    // ---------------------
    public:
	/// Assignment to another Tslice_dirac_max
	void operator=(const Tslice_dirac_max&) ;	
	
        // Virtual functions from base class Time_slice_conf:
        // -------------------------------------------------

        /** Sets the deviation \f$ h^{ij} \f$ 
         * of the conformal metric \f$ \tilde\gamma^{ij} \f$ from 
         * the flat metric \f$ f^{ij} \f$: 
         * \f$\tilde\gamma^{ij} = f^{ij} + h^{ij} \f$.
         *      \f$ h^{ij} \f$ must be such that 
         *      \f$\det\tilde\gamma^{ij} = f^{-1} \f$.
         * Sets the value at the current time step (\c jtime ).
         */        
        virtual void set_hh(const Sym_tensor& hh_in) ; 

        /** Computes valid initial data by solving the constraint 
         *  equations in the conformal thin-sandwich approach.
         *
         *  @param uu value of 
         *    \f$ {\tilde u}^{ij} = \partial h^{ij} /\partial t \f$ 
         *                  (freely specifiable data).
         *  This quantity must be trace-free with respect to the conformal
         *  metric \f$\tilde\gamma_{ij}\f$, reflecting the unimodular 
         *  character of \f$\tilde\gamma_{ij}\f$.
         *  @param trk_in value of \f$ K = K_i^{\ i} \f$ 
         *      (freely specifiable data)
         *  @param trk_point value of \f$ \partial K / \partial t \f$ 
         *      (freely specifiable data)
         *  @param pdt time step, to be used in order to fill \c depth
         *      slices
         *  @param precis convergence threshold required to stop the 
         *          iteration
         *  @param method_poisson_vect method to be used for solving 
         *      vector Poisson equation (for the shift), see 
         *      \c Vector::poisson(double, const Metric_flat&, int) const.  
         *  @param graph_device  name of type of graphical device: 0x0 
         *      (default value) will result in interactive choice; 
         *      "/xwin" in X-Window display and "/n" in no output.
         *  @param ener_dens matter energy density \e E as measured by the 
         *      Eulerian observer; this quantity is passed as a pointer,
         *      the null value of which (default) meaning \e E=0.
         *  @param mom_dens matter momentum density \e J as measured by the 
         *      Eulerian observer; this quantity is passed as a pointer,
         *      the null value of which (default) meaning \e J=0.
         *  @param trace_stress trace of the matter stress \e S as measured 
         *      by the Eulerian observer; this quantity is passed as a pointer,
         *      the null value of which (default) meaning \e S=0.
         */
         virtual void initial_data_cts(const Sym_tensor& uu, const Scalar& trk_in, 
                const Scalar& trk_point, double pdt, double precis = 1.e-12,
                int method_poisson_vect = 6, const char* graph_device = 0x0, 
                const Scalar* ener_dens = 0x0, const Vector* mom_dens = 0x0, 
                const Scalar* trace_stress = 0x0 ) ; 
        
        // Virtual functions from this class:
        // ----------------------------------

	/** Sets the potentials \f$\chi \f$ and \f$\mu\f$
         * of the TT part \f$ \bar{h}^{ij} \f$ of \f$ h^{ij} \f$
	 * (see the documentation of \c Sym_tensor_tt for details).
         * The value of \f$ h^{ij} \f$ is then deduced from the
         * unimodularity condition on the conformal metric.
         * Sets the value at the current time step (\c jtime ).
	 */
	virtual void set_khi_mu(const Scalar& khi_in, const Scalar& mu_in) ; 

	/** Sets the potentials \e A and \f$\tilde{B}\f$
         * of the TT part \f$ \bar{h}^{ij} \f$ of \f$ h^{ij} \f$
	 * (see the documentation of \c Sym_tensor for details).
	 * \f$ h^{ij} \f$ is not modified.
         * Sets the value at the current time step (\c jtime ).
	 */
	virtual void set_AB_hh(const Scalar& A_in, const Scalar& B_in) ; 

	/** Sets the trace, with respect to the flat metric 
	 * \c ff , of \f$ h^{ij} \f$.
         * Sets the value at the current time step (\c jtime ).
         * Note that this method does not ensure that the conformal
         * metric is unimodular. 
	 */
	virtual void set_trh(const Scalar& trh_in) ;
    
	/** Solves the elliptic equation for the conformal factor $\Psi$
	 *  (Hamiltonian constraint).
	 *  @param ener_dens conformal matter energy density \f$ \hat{E} = \Psi^6 E \f$,
	 *         where \e E is measured by the Eulerian observer; this quantity is 
	 *         passed as a pointer, the null value of which (default) meaning \e E=0.
	 *  @return solution \f$\Psi_{\rm new}\f$ of the elliptic equation 
	 *  (flat Laplacian) for the lapse with the source computed from the
	 *  quantities at the current time step. 
	 *  
	 */
	virtual Scalar solve_psi(const Scalar* ener_dens=0x0) const ; 
        
	/** Solves the elliptic equation for \f$ N\Psi \f$ (maximal
	 *  slicing condition + Hamiltonian constraint)
	 *  @param ener_dens conformal matter energy density \f$ \hat{E} = \Psi^6 E \f$,
	 *         where \e E is measured by the Eulerian observer; this quantity is 
	 *         passed as a pointer, the null value of which (default) meaning \e E=0.
	 *  @param trace_stress trace of the conformal matter stress 
	 *         \f$ S^* = \Psi^6 S \f$,
	 *                      where \e S is measured by the Eulerian observer; 
	 *                      this quantity is passed as a pointer,
	 *                      the null value of which (default) meaning \e S=0.
	 *  @return solution \f$(N\Psi)_{\rm new}\f$ of the elliptic equation 
	 *  (flat Laplacian) for \f$ N\Psi \f$ with the source computed from the
	 *  quantities at the current time step. 
	 *  
	 */
	virtual Scalar solve_npsi(const Scalar* ener_dens=0x0,
				  const Scalar* trace_stress=0x0) const ; 
        
	/** Solves the elliptic equation for the shift vector \f$\beta^i\f$ 
	 *  from \f$ A^{ij} \f$ (Eq. (73) of Bonazzola et al. 2004).
	 *  @param method method to be used for solving 
	 *      vector Poisson equation (for the shift), see 
	 *      \c Vector::poisson(double, const Metric_flat&, int) const.  
	 *  @return solution \f$\beta^i_{\rm new}\f$ of the elliptic equation 
	 *  (flat vector Laplacian) for the shift with the source computed from the
	 *  quantities at the current time step. 
	 *  
	 */
	virtual Vector solve_beta(int method = 6) const ; 
        
    /** Time evolution by resolution of Einstein equations.
     *  
     *  @param pdt  time step \e dt.
     *  @param nb_time_steps  number of time steps for the evolution
     *  @param niter_elliptic  number of iterations if the resolution 
     *      of elliptic equations
     *  @param relax_elliptic  relaxation factor for the elliptic
     *      equations
     *  @param check_mod determines the frequency of check of the 
     *      constraint equations: they are checked every \c check_mod time step
     *  @param save_mod determines the frequency of writing to file
     *      the monotoring quantities: they are written to file every
     *      \c save_mod time step
     *  @param method method_poisson_vect to be used for solving 
     *      vector Poisson equation (for the shift), see 
     *      \c Vector::poisson(double, const Metric_flat&, int) const.  
     *  @param nopause  = 1 if no pause between each time step, 0 otherwise
     *  @param graph_device  name of type of graphical device: 0x0 
     *      (default value) will result in interactive choice; 
     *      "/xwin" in X-Window display and "/n" in no output.
     */
    void evolve(double pdt, int nb_time_steps, int niter_elliptic,
                double relax_elliptic, int check_mod, int save_mod,
                int method_poisson_vect = 6, int nopause = 1, 
                const char* graph_device = 0x0, bool verbose=true, 
		const Scalar* ener_euler = 0x0,
		const Vector* mom_euler = 0x0, const Scalar* s_euler = 0x0,
		const Sym_tensor* strain_euler = 0x0) ; 
        
    /** Returns the ADM mass at (geometrical units) the current step.
     * Moreover this method updates \c adm_mass_evol if
     * necessary. 
     */
    virtual double adm_mass() const ; 
        
    protected:
    /** Computes the sources \c source_A_XXX_evol and \c source_B_XXX_evol ,
     * for the solution of the evolution equation for \f$ h^{ij} \f$ and
     * \f$ \hat{A}^{ij} \f$.
     *  @param strain_tensor [input] : a pointer on the strain_tensor 
     *      \f$ S^{ij} \f$ measured by the Eulerian observer of 4-velocity 
     *      \f$\mbox{\boldmath{$n $}}\f$ ; if this is the null pointer
     *      (default value), it is assumed that \f$ S_{ij} \f$ = 0 (vacuum).  
     */
    void compute_sources(const Sym_tensor* strain_tensor = 0x0) const ;

    /// Copy the sources \c source_A_XXX_evol and \c source_B_XXX_evol to all time-steps.
    void initialize_sources_copy() const ;

    /** Computes \f$ h^{ij} \f$ from the values of \e A and 
     * \f$\tilde{B}\f$ and using the condition 
     * \f$\det\tilde\gamma^{ij} = \det f^{ij} \f$, which fixes the
     * trace of \f$ h^{ij} \f$.
     * @param j time step at which the computation of \f$ h^{ij} \f$
     *      is required.
     */
    void hh_det_one(int j, Param* par_bc = 0x0, Param* par_mat = 0x0) const ; 
    
    /** Computes \f$ h^{ij} \f$ from the TT part using the condition 
     * \f$\det\tilde\gamma^{ij} = \det f^{ij} \f$, which fixes the
     * trace of \f$ h^{ij} \f$.
     * @param hijtt : the TT part.
     */
    void hh_det_one(const Sym_tensor_tt& hijtt, Param* par_mat = 0x0) const ;

    // Accessors
    // ---------
    public:
    // Virtual functions from base class Time_slice_conf:
    // -------------------------------------------------
    
    /** Deviation \f$ h^{ij} \f$ 
     * of the conformal metric \f$ \tilde\gamma^{ij} \f$ from 
     * the flat metric \f$ f^{ij} \f$: 
     * \f$\tilde\gamma^{ij} = f^{ij} + h^{ij} \f$.
     * Returns the value at the current time step (\c jtime ).
     */        
    virtual const Sym_tensor& hh(Param* par_bc = 0x0, Param* par_mat = 0x0) const ; 
    
    /** Trace \e K of the extrinsic curvature 
     *  at the current time step (\c jtime ).
     * It is null in the present case (maximal slicing)
     */        
    virtual const Scalar& trk() const ; 
    
    /** Vector \f$ H^i = {\cal D}_j \tilde\gamma^{ij} \f$ 
     * which vanishes in Dirac gauge.
     * It is null in the present case...
     */
    virtual const Vector& hdirac() const ; 
    
    // Virtual functions from this class:
    // ----------------------------------
    
    /** Returns the potential \e A of \f$ \bar{h}^{ij} \f$.
     * See the documentation of \c Sym_tensor for details.
     * Returns the value at the current time step (\c jtime ).
     */
    virtual const Scalar& A_hh() const ; 
    
    /** Returns the potential \f$\tilde{B}\f$ of \f$ \bar{h}^{ij} \f$.
     * See the documentation of \c Sym_tensor_tt for details.
     * Returns the value at the current time step (\c jtime ).
     */
    virtual const Scalar& B_hh() const ;
    
    /** Computes the trace \c h, with respect to the flat metric 
     * \c ff , of \f$ h^{ij} \f$. 
     * Returns the value at the current time step (\c jtime ).
     */
    virtual const Scalar& trh() const ;
    
    
    // Outputs
    // -------
    protected:
    /// Operator >> (virtual function called by the operator<<). 
    virtual ostream& operator>>(ostream& ) const ;	
    
    /** Total or partial saves in a binary file.
     *  This protected method is to be called either from public method 
     *  \c save or from method \c sauve of a derived class. 
     *  
     *  @param fich binary file 
     *  @param partial_save indicates whether the whole object must be
     *      saved.
     */
    virtual void sauve(FILE* fich, bool partial_save) const ; 
  
};
}
#endif