This file is indexed.

/usr/include/lorene/C++/Include/vector.h is in liblorene-dev 0.0.0~cvs20161116+dfsg-1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
 /*
 *  Definition of Lorene class Vector
 *
 */

/*
 *   Copyright (c) 2003  Eric Gourgoulhon & Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef __VECTOR_H_ 
#define __VECTOR_H_ 

/*
 * $Id: vector.h,v 1.42 2014/10/13 08:52:37 j_novak Exp $
 * $Log: vector.h,v $
 * Revision 1.42  2014/10/13 08:52:37  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.41  2008/12/03 10:18:56  j_novak
 * Method 6 is now the default for calls to vector Poisson solver.
 *
 * Revision 1.40  2008/10/29 08:19:08  jl_cornou
 * Typo in the doxygen documentation + spectral bases for pseudo vectors added
 * and curl
 *
 * Revision 1.39  2008/08/27 08:45:21  jl_cornou
 * Implemented routines to solve dirac systems for divergence-free vectors
 *
 * Revision 1.38  2007/12/21 16:06:16  j_novak
 * Methods to filter Tensor, Vector and Sym_tensor objects.
 *
 * Revision 1.37  2007/05/11 11:38:16  n_vasset
 * Added poisson_boundary2.C routine
 *
 * Revision 1.36  2007/01/16 15:05:59  n_vasset
 * New constructor (taking a Scalar in mono-domain angular grid for
 * boundary) for function sol_elliptic_boundary
 *
 * Revision 1.35  2005/06/09 07:56:25  f_limousin
 * Implement a new function sol_elliptic_boundary() and
 * Vector::poisson_boundary(...) which solve the vectorial poisson
 * equation (method 6) with an inner boundary condition.
 *
 * Revision 1.34  2005/02/16 15:00:05  m_forot
 * Add visu_streamlime function
 *
 * Revision 1.33  2005/02/14 13:01:48  j_novak
 * p_eta and p_mu are members of the class Vector. Most of associated functions
 * have been moved from the class Vector_divfree to the class Vector.
 *
 * Revision 1.32  2004/05/25 14:54:01  f_limousin
 * Change arguments of method poisson with parameters.
 *
 * Revision 1.31  2004/05/09 20:54:22  e_gourgoulhon
 * Added method flux (to compute the flux accross a sphere).
 *
 * Revision 1.30  2004/03/29 11:57:13  e_gourgoulhon
 * Added methods ope_killing and ope_killing_conf.
 *
 * Revision 1.29  2004/03/28 21:25:14  e_gourgoulhon
 * Minor modif comments (formula for V^\theta in Vector_divfree).
 *
 * Revision 1.28  2004/03/27 20:59:55  e_gourgoulhon
 * Slight modif comment (doxygen \ingroup).
 *
 * Revision 1.27  2004/03/22 13:12:44  j_novak
 * Modification of comments to use doxygen instead of doc++
 *
 * Revision 1.26  2004/03/10 12:52:19  f_limousin
 * Add a new argument "method" in poisson method.
 *
 * Revision 1.25  2004/03/03 09:07:02  j_novak
 * In Vector::poisson(double, int), the flat metric is taken from the mapping.
 *
 * Revision 1.24  2004/02/26 22:45:44  e_gourgoulhon
 * Added method derive_lie.
 *
 * Revision 1.23  2004/02/22 15:47:45  j_novak
 * Added 2 more methods to solve the vector Poisson equation. Method 1 is not
 * tested yet.
 *
 * Revision 1.22  2004/02/21 16:27:53  j_novak
 * Modif. comments
 *
 * Revision 1.21  2004/02/16 17:40:14  j_novak
 * Added a version of poisson with the flat metric as argument (avoids
 * unnecessary calculations by decompose_div)
 *
 * Revision 1.20  2003/12/14 21:47:24  e_gourgoulhon
 * Added method visu_arrows for visualization through OpenDX.
 *
 * Revision 1.19  2003/11/06 14:43:37  e_gourgoulhon
 * Gave a name to const arguments in certain method prototypes (e.g.
 * constructors) to correct a bug of DOC++.
 *
 * Revision 1.18  2003/11/03 22:31:02  e_gourgoulhon
 * Class Vector_divfree: parameters of methods set_vr_eta_mu and set_vr_mu
 * are now all references.
 *
 * Revision 1.17  2003/11/03 14:02:17  e_gourgoulhon
 * Class Vector_divfree: the members p_eta and p_mu are no longer declared
 * "const".
 *
 * Revision 1.16  2003/10/20 15:12:17  j_novak
 * New method Vector::poisson
 *
 * Revision 1.15  2003/10/20 14:44:49  e_gourgoulhon
 * Class Vector_divfree: added method poisson().
 *
 * Revision 1.14  2003/10/20 09:32:10  j_novak
 * Members p_potential and p_div_free of the Helmholtz decomposition
 * + the method decompose_div(Metric).
 *
 * Revision 1.13  2003/10/17 16:36:53  e_gourgoulhon
 * Class Vector_divfree: Added new methods set_vr_eta_mu and set_vr_mu.
 *
 * Revision 1.12  2003/10/16 21:36:01  e_gourgoulhon
 * Added method Vector_divfree::update_vtvp().
 *
 * Revision 1.11  2003/10/16 15:25:00  e_gourgoulhon
 * Changes in documentation.
 *
 * Revision 1.10  2003/10/16 14:21:33  j_novak
 * The calculation of the divergence of a Tensor is now possible.
 *
 * Revision 1.9  2003/10/13 20:49:26  e_gourgoulhon
 * Corrected typo in the comments.
 *
 * Revision 1.8  2003/10/13 13:52:39  j_novak
 * Better managment of derived quantities.
 *
 * Revision 1.7  2003/10/12 20:33:15  e_gourgoulhon
 * Added new derived class Vector_divfree (preliminary).
 *
 * Revision 1.6  2003/10/06 13:58:45  j_novak
 * The memory management has been improved.
 * Implementation of the covariant derivative with respect to the exact Tensor
 * type.
 *
 * Revision 1.5  2003/10/05 21:07:27  e_gourgoulhon
 * Method std_spectral_base() is now virtual.
 *
 * Revision 1.4  2003/10/03 14:08:03  e_gourgoulhon
 * Added constructor from Tensor.
 *
 * Revision 1.3  2003/09/29 13:48:17  j_novak
 * New class Delta.
 *
 * Revision 1.2  2003/09/29 12:52:56  j_novak
 * Methods for changing the triad are implemented.
 *
 * Revision 1.1  2003/09/26 08:07:32  j_novak
 * New class vector
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/vector.h,v 1.42 2014/10/13 08:52:37 j_novak Exp $
 *
 */

namespace Lorene {
class Vector_divfree ;

			//-------------------------//
			//       class Vector      //
			//-------------------------//
			

/**
 * Tensor field of valence 1. \ingroup (tensor)
 * 
 */
class Vector: public Tensor {

    // Derived data : 
    // ------------
    protected:
        /** The potential \f$\phi\f$ giving the gradient part in the Helmholtz 
	 * decomposition of any 3D vector \f$\vec{V}: \quad \vec{V} = 
	 * \vec{\nabla} \phi + \vec{\nabla} \wedge \vec{\psi}\f$.
	 * Only in the case of contravariant vectors.
	 */
        mutable Scalar* p_potential[N_MET_MAX] ;

	/** The divergence-free vector \f$\vec{W} =  \vec{\nabla} \wedge 
	 * \vec{\psi}\f$ of the Helmholtz decomposition of any 3D vector 
	 *\f$\vec{V}: \quad \vec{V} = \vec{\nabla} \phi + \vec{\nabla} 
	 *\wedge \vec{\psi}\f$. Only in the case of contravariant vectors.
	 */
	mutable Vector_divfree* p_div_free[N_MET_MAX] ;

 	/** Field \f$\eta\f$ such that the angular components \f$(V^\theta, V^\varphi)\f$
	 * of the vector are written:
	 * \f[
	 *	V^\theta =   {\partial \eta \over \partial\theta} -
	 *		 {1\over\sin\theta} {\partial \mu \over \partial\varphi} 
	 * \f] 
	 * \f[
	 *	V^\varphi =  {1\over\sin\theta} 
	 *				{\partial \eta \over \partial\varphi}
	 *				+ {\partial \mu \over \partial\theta} 
	 * \f] 
	 */
	mutable Scalar* p_eta ;
	
	/** Field \f$\mu\f$ such that the angular components \f$(V^\theta, V^\varphi)\f$
	 * of the vector are written:
	 * \f[
	 *	V^\theta =  {\partial \eta \over \partial\theta} -
	 *	 {1\over\sin\theta} {\partial \mu \over \partial\varphi} 
	 * \f] 
	 * \f[
	 *	V^\varphi =  {1\over\sin\theta} 
	 *				{\partial \eta \over \partial\varphi}
	 *				+ {\partial \mu \over \partial\theta} 
	 * \f] 
	 */
	mutable Scalar* p_mu ;

	/** Field \f$A\f$ defined by 
	 * \f[ 
	 *     A = {\partial \eta \over \ partial r} + { \eta \over r} - {V^r \over r}
	 *  \f]
	 * Insensitive to the longitudinal part of the vector, related to the curl.
	 */
	mutable Scalar* p_A ;
 	
   // Constructors - Destructor
    // -------------------------
    public:
	/** Standard constructor.
	 * 
	 * @param map   the mapping 
	 * @param tipe  the type \c COV  for a covariant vector (1-form) 
	 *		and \c CON  for a contravariant one
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *		    the vector components are defined 
	 */
	Vector(const Map& map, int tipe, const Base_vect& triad_i) ;

	/** Standard constructor with the triad passed as a pointer.
	 * 
	 * @param map   the mapping 
	 * @param tipe  the type \c COV  for a covariant vector (1-form) 
	 *		and \c CON  for a contravariant one
	 * @param triad_i  pointer on the vectorial basis (triad) 
	 * with respect to which the vector components are defined 
	 */
	Vector(const Map& map, int tipe, const Base_vect* triad_i) ;

	Vector(const Vector& a) ;       ///< Copy constructor

	/** Constructor from a \c Tensor .
	 *  The \c Tensor  must be of valence one.
	 */
	Vector(const Tensor& a) ;	

	/** Constructor from a file (see \c Tensor::sauve(FILE*) ).
	 * 
	 * @param map  the mapping
	 * @param triad_i   vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined. It will
	 *			  be checked that it coincides with the basis
	 *			  saved in the file.
	 * @param fich  file which has been created by 
	 *			    the function \c sauve(FILE*) .
	 */
	Vector(const Map& map, const Base_vect& triad_i, FILE* fich) ;

	virtual ~Vector() ;			///< Destructor

 
    // Memory management
    // -----------------
    protected:
	virtual void del_deriv() const;	///< Deletes the derived quantities

	/// Sets the pointers on derived quantities to 0x0
	void set_der_0x0() const ; 

	/**
	 * Logical destructor of the derivatives depending on the i-th
	 * element of \c met_depend  in the class \c Vector.
	 */	
	virtual void del_derive_met(int) const ;

	/**
	 * Sets all the i-th components of \c met_depend  in the 
	 * class \c Vector  (\c p_potential , etc...) to 0x0.
	 */
	void set_der_met_0x0(int) const ;


    // Mutators / assignment
    // ---------------------
    public:
	/** Sets a new vectorial basis (triad) of decomposition and modifies
	 *  the components accordingly. 
	 */
	virtual void change_triad(const Base_vect& ) ; 

	/// Assignment from a Vector
	virtual void operator=(const Vector& a) ;	
	
	/// Assignment from a Tensor
	virtual void operator=(const Tensor& a) ;	

	/** Defines the components through potentials \f$\eta\f$ and \f$\mu\f$ 
	 *  (see members \c p_eta  and \c p_mu ), 
	 *  as well as the \f$V^r\f$ component of the vector. 
	 *
	 *	@param vr_i [input] component \f$V^r\f$ of the vector
	 *	@param eta_i [input] angular potential \f$\eta\f$
	 *	@param mu_i [input] angular potential \f$\mu\f$
	 *
	 */
	void set_vr_eta_mu(const Scalar& vr_i, const Scalar& eta_i,
		const Scalar& mu_i) ; 

	/**Makes the Helmholtz decomposition (see documentation of
	 * \c p_potential ) of \c this  with respect to a given
	 * \c Metric , only in the case of contravariant vectors.
	 */
	void decompose_div(const Metric&) const ;

	/**Returns the potential in the Helmholtz decomposition.
	 *
	 * It first makes the Helmholtz decomposition (see documentation of
	 * \c p_potential ) of \c this  with respect to a given
	 * \c Metric  and then returns \f$\phi\f$. Only in the case
	 * of contravariant vectors.
	 */
	const Scalar& potential(const Metric& ) const ;
	
	/**Returns the div-free vector in the Helmholtz decomposition.
	 *
	 * It first makes the Helmholtz decomposition (see documentation of
	 * \c p_potential ) of \c this  with respect to a given
	 * \c Metric  and then returns \f$\vec{W}\f$. Only in the case
	 * of contravariant vectors.	
	 */
	const Vector_divfree& div_free(const Metric& ) const;

	/** Applies exponential filters to all components 
	 * (see \c Scalar::exponential_filter_r ). Does a loop for Cartesian 
	 * components, and works in terms of the r-component, \f$\eta\f$ and
	 * \f$\mu\f$ for spherical components.
	 */
	virtual void  exponential_filter_r(int lzmin, int lzmax, int p, 
			    double alpha= -16.) ;

	/** Applies exponential filters to all components 
	 * (see \c Scalar::exponential_filter_ylm ). Does a loop for Cartesian 
	 * components, and works in terms of the r-component, \f$\eta\f$ and
	 * \f$\mu\f$ for spherical components. 
	 */
	virtual void exponential_filter_ylm(int lzmin, int lzmax, int p, 
			    double alpha= -16.) ;

	
    // Accessors
    // ---------
    public:
	Scalar& set(int ) ; ///< Read/write access to a component

	const Scalar& operator()(int ) const; ///<Readonly access to a component

	/**
	 * Returns the position in the \c Scalar  array \c cmp  of a 
	 * component given by its index.  
	 *
	 * @return position in the \c Scalar  array \c cmp   
	 * corresponding to the index given in \c idx . \c idx 
	 * must be a 1-D \c Itbl  of size 1, the element of which 
	 * must be one of the spatial indices 1, 2 or 3. 
	 */
	virtual int position(const Itbl& idx) const {
	  assert (idx.get_ndim() == 1) ;
	  assert (idx.get_dim(0) == 1) ;
	  assert ((idx(0) >= 1) && (idx(0) <= 3)) ;

	  return (idx(0) - 1) ;
    
	} ;

	/**
	 * Returns the index of a component given by its position in the 
	 * \c Scalar  array \c cmp . 
	 *
	 * @return the index is stored in an 1-D array (\c Itbl ) of
	 *         size 1 giving its value for the component located at 
	 *         the position \c place  in the \c Scalar  array 
	 *         \c cmp . The element of this \c Itbl  
	 *	   corresponds to a spatial index 1, 2 or 3. 
	 */
	virtual Itbl indices(int place) const {
	  assert((place>=0) && (place<3)) ;
	  
	  Itbl res(1) ;
	  res = place + 1;
	  return res ;

	};
	
	/**
	 * Sets the standard spectal bases of decomposition for each component.
	 *
	 */
	virtual void std_spectral_base() ; 

	/**
	 * Sets the standard spectal bases of decomposition for each component for a pseudo_vector.
	 *
	 */
	virtual void pseudo_spectral_base() ; 

	/** Gives the field \f$\eta\f$ such that the angular components 
	 * \f$(V^\theta, V^\varphi)\f$ of the vector are written:
	 * \f[
	 *	V^\theta =  {\partial \eta \over \partial\theta} -
	 *	 {1\over\sin\theta} {\partial \mu \over \partial\varphi} 
	 * \f] 
	 * \f[
	 *	V^\varphi =  {1\over\sin\theta} 
	 *				{\partial \eta \over \partial\varphi}
	 *				+ {\partial \mu \over \partial\theta} 
	 * \f] 
	 */
	virtual const Scalar& eta() const ;
	
	/** Gives the field \f$\mu\f$ such that the angular components 
	 * \f$(V^\theta, V^\varphi)\f$ of the vector are written:
	 * \f[
	 *	V^\theta =  {\partial \eta \over \partial\theta} -
	 *	 {1\over\sin\theta} {\partial \mu \over \partial\varphi}
	 * \f] 
	 * \f[
	 *	V^\varphi =  {1\over\sin\theta} 
	 *				{\partial \eta \over \partial\varphi}
	 *				+ {\partial \mu \over \partial\theta} 
	 * \f] 
	 */
	virtual const Scalar& mu() const ;


	/** Gives the field \f$A\f$ defined by 
	 * \f[ 
	 *     A = {\partial \eta \over \partial r} + { \eta \over r} - {V^r \over r}
	 *  \f]
	 *  Related to the curl, A is insensitive to the longitudinal part of the vector.
	 */
	virtual const Scalar& A() const ;

	
	/** Computes the components \f$V^\theta\f$ and \f$V^\varphi\f$ from the
	 *  potential \f$\eta\f$ and  \f$\mu\f$, according to:
	 * \f[
	 *	V^\theta =  {\partial \eta \over \partial\theta} - 
	 *		{1\over\sin\theta} {\partial \mu \over \partial\varphi}
	 * \f] 
	 * \f[
	 *	V^\varphi =  {1\over\sin\theta} 
	 *				{\partial \eta \over \partial\varphi}
	 *				+ {\partial \mu \over \partial\theta} 
	 * \f] 
	 */
	void update_vtvp() ;

	
    // Differential operators/ PDE solvers
    // -----------------------------------
    public:
	/**The divergence of \c this  with respect to a \c Metric .
	 * The \c Vector  is assumed to be contravariant.
	 */
	const Scalar& divergence(const Metric&) const ; 

	/** The curl of \c this with respect to a (flat) \c Metric .
	 *  The \c Vector is assumed to be contravariant.
	 */
	const Vector_divfree curl() const ;

    /** Computes the Lie derivative of \c this  with respect to some
     *  vector field \c v 
     */
    Vector derive_lie(const Vector& v) const ; 
        
    /** Computes the Killing operator associated with a given metric.
     *  The Killing operator is defined by \f$ D^i V^j + D^j V^i \f$
     *  for a contravariant vector and by \f$ D_i V_j + D_j V_i \f$
     *  for a covariant vector.
     * @param gam metric with respect to which the covariant derivative
     *  \f$ D_i \f$ is defined. 
     */
     Sym_tensor ope_killing(const Metric& gam) const ; 
     
    /** Computes the conformal Killing operator associated with a given metric.
     *  The conformal Killing operator is defined by 
     *  \f$ D^i V^j + D^j V^i - \frac{2}{3} D_k V^k \, \gamma^{ij} \f$
     *  for a contravariant vector and by 
     *  \f$ D_i V_j + D_j V_i - \frac{2}{3} D^k V_k \, \gamma_{ij}\f$
     *  for a covariant vector.
     * @param gam metric \f$\gamma_{ij}\f$ with respect to which the covariant 
     *  derivative \f$ D_i \f$ is defined. 
     */
     Sym_tensor ope_killing_conf(const Metric& gam) const ; 

    /**Solves the vector Poisson equation with \c *this  as a source.
     * 
     * The equation solved is \f$\Delta N^i +\lambda \nabla^i 
     * \nabla_k N^k = S^i\f$.
     * \c *this  must be given with \c dzpuis  = 4.
     * It uses the Helmholtz decomposition (see documentation of
     * \c p_potential ), with a flat metric, deduced from the triad.
     *
     * @param lambda [input] \f$\lambda\f$.
     * @param method [input] method used to solve the equation 
     * (see Vector::poisson(double, Metric_flat, int) for details).
     *
     * @return the solution \f$N^i\f$.
     */
    Vector poisson(double lambda, int method = 6) const ;
     
    /**Solves the vector Poisson equation with \c *this  as a source.
     * 
     * The equation solved is \f$\Delta N^i +\lambda \nabla^i 
     * \nabla_k N^k = S^i\f$.
     * \c *this  must be given with \c dzpuis  = 4.
     * It uses the Helmholtz decomposition (see documentation of
     * \c p_potential ), with the flat metric \c met_f  given 
     * in argument.
     *
     * @param lambda [input] \f$\lambda\f$.
     * @param met_f [input] the flat metric for the Helmholtz decomposition.
     * @param method [input] method used to solve the equation:
     *        \li 0 : It uses the Helmholtz decomposition (see documentation of
     *            \c p_potential ), with the flat metric \c met_f  given 
     *            in argument (the default).
     *        \li 1 : It solves, first for the divergence (calculated using 
     *            \c met_f ), then the \e r -component, the \f$\eta\f$ 
     *            potential, and fianlly the \f$\mu\f$ potential (see documentation
     *            of \c Vector_div_free .
     *        \li 2 : The sources is transformed to cartesian components and the 
     *            equation is solved using Shibata method (see Granclement 
     *            \e et \e al. JCPH 2001.
     *        \li 6 : Solves for the \e r -component and \f$ \eta \f$ together in a
     *            system, and for the \f$ \mu \f$ potential (which decouples). The
     *            solution is then built from these fields through the method
     *            \c Vector::set_vr_eta_mu(). It is the default method.
     *
     * @return the solution \f$N^i\f$.
     */
    Vector poisson(double lambda, const Metric_flat& met_f, int method = 6) const ;
    
    /**Solves the vector Poisson equation with \c *this  as a source
     * and parameters controlling the solution.
     * 
     * The equatiopn solved is \f$\Delta N^i +\lambda \nabla^i 
     * \nabla_k N^k = S^i\f$.
     * \c *this  must be given with \c dzpuis  = 4.
     * It uses the Helmholtz decomposition (see documentation of
     * \c p_potential ), with a flat metric, deduced from the triad.
     *
     * @param lambda [input] \f$\lambda\f$.
     *   @param par [input/output] possible parameters
     *   @param uu [input/output] solution \e u  with the 
     *              boundary condition \e u =0 at spatial infinity. 
     */
    
    Vector poisson(const double lambda, Param& par,
		   int method = 6) const ;
    
    /**Solves the vector Poisson equation with \c *this  as a source 
     * with a boundary condition on the excised sphere.
     * 
     * The equation solved is \f$\Delta N^i +\lambda \nabla^i 
     * \nabla_k N^k = S^i\f$.
     * \c *this  must be given with \c dzpuis  = 4.
     * It uses the Helmholtz decomposition (see documentation of
     * \c p_potential )
     *
     * @param lambda [input] \f$\lambda\f$.
     * @param resu [output] the solution \f$N^i\f$.
     */
    void poisson_boundary(double lambda, const Mtbl_cf& limit_vr, 
			  const Mtbl_cf& limit_eta, const Mtbl_cf& limit_mu, 
			  int num_front, double fact_dir, double fact_neu,
			  Vector& resu) const ;
 

    /**Alternative to previous poisson_boundary method for vectors ; 
     * this uses method 6 for vectorial solving, updated version 
     * (as in the poisson_vector_block routine). 
     * Boundary arguments are here required as scalar fields.
     */
    void poisson_boundary2(double lam, Vector& resu, Scalar boundvr, 
			   Scalar boundeta, Scalar boundmu, double dir_vr, 
			   double neum_vr, double dir_eta, double neum_eta, 
			   double dir_mu, double neum_mu ) const ;

 
    Vector poisson_dirichlet(double lambda, const Valeur& limit_vr, 
			  const Valeur& limit_vt, const Valeur& limit_vp, 
			  int num_front) const ;

     /**Solves the vector Poisson equation with \c *this  as a source 
     * with a boundary condition on the excised sphere.
     * 
     * The equation solved is \f$\Delta N^i +\lambda \nabla^i 
     * \nabla_k N^k = S^i\f$.
     * \c *this  must be given with \c dzpuis  = 4.
     * It uses the Helmholtz decomposition (see documentation of
     * \c p_potential )
     *
     * @param lambda [input] \f$\lambda\f$.
     * @param resu [output] the solution \f$N^i\f$.
     */
    Vector poisson_neumann(double lambda, const Valeur& limit_vr, 
			  const Valeur& limit_vt, const Valeur& limit_vp, 
			  int num_front) const ;

    /**Solves the vector Poisson equation with \c *this  as a source 
     * with a boundary condition on the excised sphere.
     * 
     * The equation solved is \f$\Delta N^i +\lambda \nabla^i 
     * \nabla_k N^k = S^i\f$.
     * \c *this  must be given with \c dzpuis  = 4.
     * It uses the Helmholtz decomposition (see documentation of
     * \c p_potential )
     *
     * @param lambda [input] \f$\lambda\f$.
     * @param resu [output] the solution \f$N^i\f$.
     */
    Vector poisson_robin(double lambda, const Valeur& limit_vr, 
			 const Valeur& limit_vt, const Valeur& limit_vp, 
			 double fact_dir, double fact_neu, 
			 int num_front) const ;
 

    /** Computes the flux of the vector accross a sphere \e r = const.
     *
     *  @param radius radius of the sphere \e S on which the flux is
     *      to be taken; the center of \e S is assumed to be the 
     *      center of the mapping (member \c mp).
     *      \c radius can take the value \c __infinity (to get the flux
     *      at spatial infinity).
     *  @param met metric \f$ \gamma \f$ giving the area element 
     *      of the sphere
     *  @return \f$ \oint_S V^i ds_i \f$, where \f$ V^i \f$ is the vector
     *  represented by \c *this and \f$ ds_i \f$ is the area element 
     *  induced on \e S by \f$ \gamma \f$.
     */
    double flux(double radius, const Metric& met) const ; 

    void poisson_block(double lambda, Vector& resu) const ;

        // Graphics
        // --------
 public:
  /** 3D visualization via OpenDX.
   *
   * @param xmin [input] defines with \c xmax  the x range of the visualization box 
   * @param xmax [input] defines with \c xmin  the x range of the visualization box 
   * @param ymin [input] defines with \c ymax  the y range of the visualization box 
   * @param ymax [input] defines with \c ymin  the y range of the visualization box 
   * @param zmin [input] defines with \c zmax  the z range of the visualization box 
   * @param zmax [input] defines with \c zmin  the z range of the visualization box 
   * @param title [input] title for the graph (for OpenDX legend)
   * @param filename [input] name for the file which will be the input for 
   *    OpenDX; the default 0x0 is transformed into "vector_arrows"
   * @param start_dx [input] determines whether OpenDX must be launched (as a
   *     subprocess) to view the field; if set to \c false , only input files
   *     for future usage of OpenDX are created 
   * @param nx [input] number of points in the x direction (uniform sampling)   
   * @param ny [input] number of points in the y direction (uniform sampling)   
   * @param nz [input] number of points in the z direction (uniform sampling)   
   *
   */
    void visu_arrows(double xmin, double xmax, double ymin, double ymax,
    double zmin, double zmax, const char* title0 = 0x0, 
    const char* filename0 = 0x0, bool start_dx = true, int nx = 8, int ny = 8, 
    int nz = 8) const ;    

    void visu_streamline(double xmin, double xmax, double ymin, double ymax,
    double zmin, double zmax, const char* title0 = 0x0, 
    const char* filename0 = 0x0, bool start_dx = true, int nx = 8, int ny = 8, 
    int nz = 8) const ;   
        
     
 
};



			//---------------------------------//
			//       class Vector_divfree      //
			//---------------------------------//
			

/**
 * Divergence-free vectors. \ingroup (tensor)
 *
 * This class is designed to store divergence-free vectors,
 * with the component expressed in a orthonormal spherical basis
 * \f$(e_r,e_\theta,e_\varphi)\f$.
 *
 * 
 */
class Vector_divfree: public Vector {

    // Data : 
    // -----
    protected:
	/// Metric with respect to which the divergence is defined
	const Metric* const met_div ; 
	
    // Constructors - Destructor
    // -------------------------
    public:
	/** Standard constructor.
	 * 
	 * @param map   the mapping 
	 * @param triad_i  vectorial basis (triad) with respect to which 
	 *		    the vector components are defined 
	 * @param met the metric with respect to which the divergence is defined
	 */
	Vector_divfree(const Map& map, const Base_vect& triad_i, 
		const Metric& met) ;

	Vector_divfree(const Vector_divfree& ) ;       ///< Copy constructor

	/** Constructor from a file (see \c Tensor::sauve(FILE*) ).
	 * 
	 * @param map  the mapping
	 * @param triad_i   vectorial basis (triad) with respect to which 
	 *			  the tensor components are defined. It will
	 *			  be checked that it coincides with the basis
	 *			  saved in the file.
	 * @param met the metric with respect to which the divergence is defined
	 * @param fich  file which has been created by 
	 *			    the function \c sauve(FILE*) .
	 */
	Vector_divfree(const Map& map, const Base_vect& triad_i, 
		const Metric& met, FILE* fich) ;

	virtual ~Vector_divfree() ;			///< Destructor

 
    // Memory management
    // -----------------
    protected:
	virtual void del_deriv() const;	///< Deletes the derived quantities

	/// Sets the pointers on derived quantities to 0x0
	void set_der_0x0() const ; 


    // Mutators / assignment
    // ---------------------

	public:
	/// Assignment from another \c Vector_divfree 
	void operator=(const Vector_divfree& a) ;	
	
	/// Assignment from a \c Vector 
	virtual void operator=(const Vector& a) ;	
	
	/// Assignment from a \c Tensor 
	virtual void operator=(const Tensor& a) ;	
	
	/** Sets the angular potentials \f$\mu\f$ (see member
	 *  \c p_mu ), and the \f$V^r\f$ component
	 *  of the vector. The potential \f$\eta\f$ is then deduced from
	 *  \f$V^r\f$ by the divergence-free condition. 
	 *  The components \f$V^\theta\f$ and \f$V^\varphi\f$ are updated consistently
	 *  by a call to the method \c update_vtvp() .
	 *
	 *	@param vr_i [input] component \f$V^r\f$ of the vector
	 *	@param mu_i [input] angular potential \f$\mu\f$
	 *
	 */
	void set_vr_mu(const Scalar& vr_i, const Scalar& mu_i) ; 
	
	/** Defines the components through \f$V_r\f$, \f$\eta\f$ and \f$\mu\f$.
	 * (see members \c p_eta and \c p_mu ),
	 *
	 *	@param vr_i [input] r-component of the vector 
	 *	@param eta_i [input] Angular potential \f$\eta\f$
	 * 	@param mu_i [input] Angular potential \f$\mu\f$
	 *
	 */
	void set_vr_eta_mu(const Scalar& vr_i, const Scalar& eta_i, const Scalar& mu_i) ;

	/** Defines the components through potentials \f$A\f$ and \f$\mu\f$.
	 * (see members \c p_A and \c p_mu ),
	 * 
	 *	@param A_i [input] Angular potential \f$A\f$
	 * 	@param mu_i [input] Angular potential \f$\mu\f$
	 *
	 */
	void set_A_mu(const Scalar& A_i, const Scalar& mu_i, const Param* par_bc) ;	
	
	// Computational methods
	// ---------------------
	public:
	/** Gives the field \f$\eta\f$ such that the angular components 
	 * \f$(V^\theta, V^\varphi)\f$ of the vector are written:
	 * \f[
	 *	V^\theta =  {\partial \eta \over \partial\theta} -
	 *	 {1\over\sin\theta} {\partial \mu \over \partial\varphi} 
	 * \f] 
	 * \f[
	 *	V^\varphi =  {1\over\sin\theta} 
	 *				{\partial \eta \over \partial\varphi}
	 *				+ {\partial \mu \over \partial\theta} 
	 * \f] 
	 */
	virtual const Scalar& eta() const ;
	
	/** Computes the solution of a vectorial Poisson equation
	 *  with \c *this  \f$= \vec{V}\f$ as a source:
	 * \f[
	 *    \Delta \vec{W} = \vec{V}
	 * \f] 
	 * 
	 * @return solution \f$\vec{W}\f$ of the above equation with the boundary
	 *	condition \f$\vec{W}=0\f$ at spatial infinity.
	 */
	Vector_divfree poisson() const ; 

	/** Computes the components \f$V^r\f$ and \f$\eta\f$ from the potential
	 *  A and the divergence-free condition, according to : 
	 * \f[ 
	 *      {\partial \eta \over \ partial r} + { \eta \over r} 
	 *						- {V^r \over r} = A
	 * \f]
	 * \f[
	 * 	{\partial V^r \over \partial r} + {2 V^r \over r} 
	 * 		+ {1 \over r} \Delta_{\vartheta \varphi} \eta = 0
	 * \f]
	 */
	void update_etavr() ;
	
	/** Computes the solution of a vectorial Poisson equation
	 *  with \c *this  \f$= \vec{V}\f$ as a source:
	 * \f[
	 *    \Delta \vec{W} = \vec{V}
	 * \f] 
	 * 
	 * @return solution \f$\vec{W}\f$ of the above equation with the boundary
	 *	condition \f$\vec{W}=0\f$ at spatial infinity.
	 */
	Vector_divfree poisson(Param& par) const ; 
	protected:
	
	/** Solves a system of two-coupled first-order PDEs obtained from the 
	 *  divergence-free condition and the requirement that the potential A 
	 *  has a given value. The system reads : 
	 * \f[ 
	 *     {\partial \eta \over \partial r} + {\eta \over r} - {V^r \over r} = A
	 * \f]
	 * \f[ 
	 *     {\partial V^r \over \partial r} + {2 V^r \over r} 
	 * 		+ {1 \over r}\Delta_{\vartheta \varphi}\eta = 0
	 * \f]
	 */
	void sol_Dirac_A(const Scalar& aaa, Scalar& eta, Scalar& vr,
              const Param* par_bc = 0x0) const ;	

	/** Solves via a tau method a system of two-coupled first-order PDEs 
	 *  obtained from the divergence-free condition and the requirement
	 *  that the potential A has a given value. The system reads : 
	 * \f[ 
	 *     {\partial \eta \over \partial r} + {\eta \over r} - {V^r \over r} = A
	 * \f]
	 * \f[ 
	 *     {\partial V^r \over \partial r} + {2 V^r \over r} 
	 * 		+ {1 \over r}\Delta_{\vartheta \varphi}\eta = 0
	 * \f]
	 */
	void sol_Dirac_A_tau(const Scalar& aaa, Scalar& eta, Scalar& vr,
              const Param* par_bc = 0x0) const ;

       /** Solves via a poisson method a system of two-coupled first-order PDEs 
	 *  obtained from the divergence-free condition and the requirement
	 *  that the potential A has a given value. The system reads : 
	 * \f[ 
	 *     {\partial \eta \over \partial r} + {\eta \over r} - {V^r \over r} = A
	 * \f]
	 * \f[ 
	 *     {\partial V^r \over \partial r} + {2 V^r \over r} 
	 * 		+ {1 \over r}\Delta_{\vartheta \varphi}\eta = 0
	 * \f]
	 */
	void sol_Dirac_A_poisson(const Scalar& aaa, Scalar& eta, Scalar& vr,
              const Param* par_bc = 0x0) const ;

	/** Solves a one-domain system of two-coupled first-order PDEs obtained from the 
	 *  divergence-free condition and the requirement that the potential A 
	 *  has a given value. The system reads : 
	 * \f[ 
	 *     {\partial \eta \over \partial r} + {\eta \over r} - {V^r \over r} = A
	 * \f]
	 * \f[ 
	 *     {\partial V^r \over \partial r} + {2 V^r \over r} 
	 * 		+ {1 \over r}\Delta_{\vartheta \varphi}\eta = 0
	 * \f]
	 */
	void sol_Dirac_A_1z(const Scalar& aaa, Scalar& eta, Scalar& vr,
              const Param* par_bc = 0x0) const ;	
	
};





}
#endif