/usr/include/opencv2/hdf/hdf5.hpp is in libopencv-contrib-dev 3.2.0+dfsg-4build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 | /*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2015
* Balint Cristian <cristian dot balint at gmail dot com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
#ifndef __OPENCV_HDF5_HPP__
#define __OPENCV_HDF5_HPP__
#include <vector>
namespace cv
{
namespace hdf
{
using namespace std;
//! @addtogroup hdf5
//! @{
/** @brief Hierarchical Data Format version 5 interface.
Notice that module is compiled only when hdf5 is correctly installed.
*/
class CV_EXPORTS_W HDF5
{
public:
CV_WRAP enum
{
H5_UNLIMITED = -1, H5_NONE = -1, H5_GETDIMS = 100, H5_GETMAXDIMS = 101, H5_GETCHUNKDIMS = 102,
};
virtual ~HDF5() {}
/** @brief Close and release hdf5 object.
*/
CV_WRAP virtual void close( ) = 0;
/** @brief Create a group.
@param grlabel specify the hdf5 group label.
Create a hdf5 group.
@note Groups are useful for better organise multiple datasets. It is possible to create subgroups within any group.
Existence of a particular group can be checked using hlexists(). In case of subgroups label would be e.g: 'Group1/SubGroup1'
where SubGroup1 is within the root group Group1.
- In this example Group1 will have one subgrup labeled SubGroup1:
@code{.cpp}
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// create Group1 if does not exists
if ( ! h5io->hlexists( "Group1" ) )
h5io->grcreate( "Group1" );
else
printf("Group1 already created, skipping\n" );
// create SubGroup1 if does not exists
if ( ! h5io->hlexists( "Group1/SubGroup1" ) )
h5io->grcreate( "Group1/SubGroup1" );
else
printf("SubGroup1 already created, skipping\n" );
// release
h5io->close();
@endcode
@note When a dataset is created with dscreate() or kpcreate() it can be created right within a group by specifying
full path within the label, in our example would be: 'Group1/SubGroup1/MyDataSet'. It is not thread safe.
*/
CV_WRAP virtual void grcreate( String grlabel ) = 0;
/** @brief Check if label exists or not.
@param label specify the hdf5 dataset label.
Returns **true** if dataset exists, and **false** if does not.
@note Checks if dataset, group or other object type (hdf5 link) exists under the label name. It is thread safe.
*/
CV_WRAP virtual bool hlexists( String label ) const = 0;
/* @overload */
CV_WRAP virtual void dscreate( const int rows, const int cols, const int type,
String dslabel ) const = 0;
/* @overload */
CV_WRAP virtual void dscreate( const int rows, const int cols, const int type,
String dslabel, const int compresslevel ) const = 0;
/* @overload */
CV_WRAP virtual void dscreate( const int rows, const int cols, const int type,
String dslabel, const int compresslevel, const vector<int>& dims_chunks ) const = 0;
/** @brief Create and allocate storage for two dimensional single or multi channel dataset.
@param rows declare amount of rows
@param cols declare amount of cols
@param type type to be used
@param dslabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten.
@param compresslevel specify the compression level 0-9 to be used, H5_NONE is default and means no compression.
@param dims_chunks each array member specify chunking sizes to be used for block i/o,
by default NULL means none at all.
@note If the dataset already exists an exception will be thrown.
- Existence of the dataset can be checked using hlexists(), see in this example:
@code{.cpp}
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// create space for 100x50 CV_64FC2 matrix
if ( ! h5io->hlexists( "hilbert" ) )
h5io->dscreate( 100, 50, CV_64FC2, "hilbert" );
else
printf("DS already created, skipping\n" );
// release
h5io->close();
@endcode
@note Activating compression requires internal chunking. Chunking can significantly improve access
speed booth at read or write time especially for windowed access logic that shifts offset inside dataset.
If no custom chunking is specified default one will be invoked by the size of **whole** dataset
as single big chunk of data.
- See example of level 9 compression using internal default chunking:
@code{.cpp}
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// create level 9 compressed space for CV_64FC2 matrix
if ( ! h5io->hlexists( "hilbert", 9 ) )
h5io->dscreate( 100, 50, CV_64FC2, "hilbert", 9 );
else
printf("DS already created, skipping\n" );
// release
h5io->close();
@endcode
@note A value of H5_UNLIMITED for **rows** or **cols** or booth means **unlimited** data on the specified dimension,
thus is possible to expand anytime such dataset on row, col or booth directions. Presence of H5_UNLIMITED on any
dimension **require** to define custom chunking. No default chunking will be defined in unlimited scenario since
default size on that dimension will be zero, and will grow once dataset is written. Writing into dataset that have
H5_UNLIMITED on some of its dimension requires dsinsert() that allow growth on unlimited dimension instead of dswrite()
that allows to write only in predefined data space.
- Example below shows no compression but unlimited dimension on cols using 100x100 internal chunking:
@code{.cpp}
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// create level 9 compressed space for CV_64FC2 matrix
int chunks[2] = { 100, 100 };
h5io->dscreate( 100, cv::hdf::HDF5::H5_UNLIMITED, CV_64FC2, "hilbert", cv::hdf::HDF5::H5_NONE, chunks );
// release
h5io->close();
@endcode
@note It is **not** thread safe, it must be called only once at dataset creation otherwise exception will occur.
Multiple datasets inside single hdf5 file is allowed.
*/
CV_WRAP virtual void dscreate( const int rows, const int cols, const int type,
String dslabel, const int compresslevel, const int* dims_chunks ) const = 0;
/* @overload */
CV_WRAP virtual void dscreate( const int n_dims, const int* sizes, const int type,
String dslabel ) const = 0;
/* @overload */
CV_WRAP virtual void dscreate( const int n_dims, const int* sizes, const int type,
String dslabel, const int compresslevel ) const = 0;
/* @overload */
CV_WRAP virtual void dscreate( const vector<int>& sizes, const int type,
String dslabel, const int compresslevel = HDF5::H5_NONE,
const vector<int>& dims_chunks = vector<int>() ) const = 0;
/** @brief Create and allocate storage for n-dimensional dataset, single or mutichannel type.
@param n_dims declare number of dimensions
@param sizes array containing sizes for each dimensions
@param type type to be used
@param dslabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten.
@param compresslevel specify the compression level 0-9 to be used, H5_NONE is default and means no compression.
@param dims_chunks each array member specify chunking sizes to be used for block i/o,
by default NULL means none at all.
@note If the dataset already exists an exception will be thrown. Existence of the dataset can be checked
using hlexists().
- See example below that creates a 6 dimensional storage space:
@code{.cpp}
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// create space for 6 dimensional CV_64FC2 matrix
if ( ! h5io->hlexists( "nddata" ) )
int n_dims = 5;
int dsdims[n_dims] = { 100, 100, 20, 10, 5, 5 };
h5io->dscreate( n_dims, sizes, CV_64FC2, "nddata" );
else
printf("DS already created, skipping\n" );
// release
h5io->close();
@endcode
@note Activating compression requires internal chunking. Chunking can significantly improve access
speed booth at read or write time especially for windowed access logic that shifts offset inside dataset.
If no custom chunking is specified default one will be invoked by the size of **whole** dataset
as single big chunk of data.
- See example of level 0 compression (shallow) using chunking against first
dimension, thus storage will consists by 100 chunks of data:
@code{.cpp}
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// create space for 6 dimensional CV_64FC2 matrix
if ( ! h5io->hlexists( "nddata" ) )
int n_dims = 5;
int dsdims[n_dims] = { 100, 100, 20, 10, 5, 5 };
int chunks[n_dims] = { 1, 100, 20, 10, 5, 5 };
h5io->dscreate( n_dims, dsdims, CV_64FC2, "nddata", 0, chunks );
else
printf("DS already created, skipping\n" );
// release
h5io->close();
@endcode
@note A value of H5_UNLIMITED inside the **sizes** array means **unlimited** data on that dimension, thus is
possible to expand anytime such dataset on those unlimited directions. Presence of H5_UNLIMITED on any dimension
**require** to define custom chunking. No default chunking will be defined in unlimited scenario since default size
on that dimension will be zero, and will grow once dataset is written. Writing into dataset that have H5_UNLIMITED on
some of its dimension requires dsinsert() instead of dswrite() that allow growth on unlimited dimension instead of
dswrite() that allows to write only in predefined data space.
- Example below shows a 3 dimensional dataset using no compression with all unlimited sizes and one unit chunking:
@code{.cpp}
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
int n_dims = 3;
int chunks[n_dims] = { 1, 1, 1 };
int dsdims[n_dims] = { cv::hdf::HDF5::H5_UNLIMITED, cv::hdf::HDF5::H5_UNLIMITED, cv::hdf::HDF5::H5_UNLIMITED };
h5io->dscreate( n_dims, dsdims, CV_64FC2, "nddata", cv::hdf::HDF5::H5_NONE, chunks );
// release
h5io->close();
@endcode
*/
CV_WRAP virtual void dscreate( const int n_dims, const int* sizes, const int type,
String dslabel, const int compresslevel, const int* dims_chunks ) const = 0;
/** @brief Fetch dataset sizes
@param dslabel specify the hdf5 dataset label to be measured.
@param dims_flag will fetch dataset dimensions on H5_GETDIMS, and dataset maximum dimensions on H5_GETMAXDIMS.
Returns vector object containing sizes of dataset on each dimensions.
@note Resulting vector size will match the amount of dataset dimensions. By default H5_GETDIMS will return
actual dataset dimensions. Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match
actual dataset dimension but can hold H5_UNLIMITED value if dataset was prepared in **unlimited** mode on
some of its dimension. It can be useful to check existing dataset dimensions before overwrite it as whole or subset.
Trying to write with oversized source data into dataset target will thrown exception. The H5_GETCHUNKDIMS will
return the dimension of chunk if dataset was created with chunking options otherwise returned vector size
will be zero.
*/
CV_WRAP virtual vector<int> dsgetsize( String dslabel, int dims_flag = HDF5::H5_GETDIMS ) const = 0;
/** @brief Fetch dataset type
@param dslabel specify the hdf5 dataset label to be checked.
Returns the stored matrix type. This is an identifier compatible with the CvMat type system,
like e.g. CV_16SC5 (16-bit signed 5-channel array), and so on.
@note Result can be parsed with CV_MAT_CN() to obtain amount of channels and CV_MAT_DEPTH() to obtain native cvdata type.
It is thread safe.
*/
CV_WRAP virtual int dsgettype( String dslabel ) const = 0;
/* @overload */
CV_WRAP virtual void dswrite( InputArray Array, String dslabel ) const = 0;
/* @overload */
CV_WRAP virtual void dswrite( InputArray Array, String dslabel,
const int* dims_offset ) const = 0;
/* @overload */
CV_WRAP virtual void dswrite( InputArray Array, String dslabel,
const vector<int>& dims_offset,
const vector<int>& dims_counts = vector<int>() ) const = 0;
/** @brief Write or overwrite a Mat object into specified dataset of hdf5 file.
@param Array specify Mat data array to be written.
@param dslabel specify the target hdf5 dataset label.
@param dims_offset each array member specify the offset location
over dataset's each dimensions from where InputArray will be (over)written into dataset.
@param dims_counts each array member specify the amount of data over dataset's
each dimensions from InputArray that will be written into dataset.
Writes Mat object into targeted dataset.
@note If dataset is not created and does not exist it will be created **automatically**. Only Mat is supported and
it must to be **continuous**. It is thread safe but it is recommended that writes to happen over separate non overlapping
regions. Multiple datasets can be written inside single hdf5 file.
- Example below writes a 100x100 CV_64FC2 matrix into a dataset. No dataset precreation required. If routine
is called multiple times dataset will be just overwritten:
@code{.cpp}
// dual channel hilbert matrix
cv::Mat H(100, 100, CV_64FC2);
for(int i = 0; i < H.rows; i++)
for(int j = 0; j < H.cols; j++)
{
H.at<cv::Vec2d>(i,j)[0] = 1./(i+j+1);
H.at<cv::Vec2d>(i,j)[1] = -1./(i+j+1);
count++;
}
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// write / overwrite dataset
h5io->dswrite( H, "hilbert" );
// release
h5io->close();
@endcode
- Example below writes a smaller 50x100 matrix into 100x100 compressed space optimised by two 50x100 chunks.
Matrix is written twice into first half (0->50) and second half (50->100) of data space using offset.
@code{.cpp}
// dual channel hilbert matrix
cv::Mat H(50, 100, CV_64FC2);
for(int i = 0; i < H.rows; i++)
for(int j = 0; j < H.cols; j++)
{
H.at<cv::Vec2d>(i,j)[0] = 1./(i+j+1);
H.at<cv::Vec2d>(i,j)[1] = -1./(i+j+1);
count++;
}
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// optimise dataset by two chunks
int chunks[2] = { 50, 100 };
// create 100x100 CV_64FC2 compressed space
h5io->dscreate( 100, 100, CV_64FC2, "hilbert", 9, chunks );
// write into first half
int offset1[2] = { 0, 0 };
h5io->dswrite( H, "hilbert", offset1 );
// write into second half
int offset2[2] = { 50, 0 };
h5io->dswrite( H, "hilbert", offset2 );
// release
h5io->close();
@endcode
*/
CV_WRAP virtual void dswrite( InputArray Array, String dslabel,
const int* dims_offset, const int* dims_counts ) const = 0;
/* @overload */
CV_WRAP virtual void dsinsert( InputArray Array, String dslabel ) const = 0;
/* @overload */
CV_WRAP virtual void dsinsert( InputArray Array,
String dslabel, const int* dims_offset ) const = 0;
/* @overload */
CV_WRAP virtual void dsinsert( InputArray Array,
String dslabel, const vector<int>& dims_offset,
const vector<int>& dims_counts = vector<int>() ) const = 0;
/** @brief Insert or overwrite a Mat object into specified dataset and autoexpand dataset size if **unlimited** property allows.
@param Array specify Mat data array to be written.
@param dslabel specify the target hdf5 dataset label.
@param dims_offset each array member specify the offset location
over dataset's each dimensions from where InputArray will be (over)written into dataset.
@param dims_counts each array member specify the amount of data over dataset's
each dimensions from InputArray that will be written into dataset.
Writes Mat object into targeted dataset and **autoexpand** dataset dimension if allowed.
@note Unlike dswrite(), datasets are **not** created **automatically**. Only Mat is supported and it must to be **continuous**.
If dsinsert() happen over outer regions of dataset dimensions and on that dimension of dataset is in **unlimited** mode then
dataset is expanded, otherwise exception is thrown. To create datasets with **unlimited** property on specific or more
dimensions see dscreate() and the optional H5_UNLIMITED flag at creation time. It is not thread safe over same dataset
but multiple datasets can be merged inside single hdf5 file.
- Example below creates **unlimited** rows x 100 cols and expand rows 5 times with dsinsert() using single 100x100 CV_64FC2
over the dataset. Final size will have 5x100 rows and 100 cols, reflecting H matrix five times over row's span. Chunks size is
100x100 just optimized against the H matrix size having compression disabled. If routine is called multiple times dataset will be
just overwritten:
@code{.cpp}
// dual channel hilbert matrix
cv::Mat H(50, 100, CV_64FC2);
for(int i = 0; i < H.rows; i++)
for(int j = 0; j < H.cols; j++)
{
H.at<cv::Vec2d>(i,j)[0] = 1./(i+j+1);
H.at<cv::Vec2d>(i,j)[1] = -1./(i+j+1);
count++;
}
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// optimise dataset by chunks
int chunks[2] = { 100, 100 };
// create Unlimited x 100 CV_64FC2 space
h5io->dscreate( cv::hdf::HDF5::H5_UNLIMITED, 100, CV_64FC2, "hilbert", cv::hdf::HDF5::H5_NONE, chunks );
// write into first half
int offset[2] = { 0, 0 };
for ( int t = 0; t < 5; t++ )
{
offset[0] += 100 * t;
h5io->dsinsert( H, "hilbert", offset );
}
// release
h5io->close();
@endcode
*/
CV_WRAP virtual void dsinsert( InputArray Array, String dslabel,
const int* dims_offset, const int* dims_counts ) const = 0;
/* @overload */
CV_WRAP virtual void dsread( OutputArray Array, String dslabel ) const = 0;
/* @overload */
CV_WRAP virtual void dsread( OutputArray Array,
String dslabel, const int* dims_offset ) const = 0;
/* @overload */
CV_WRAP virtual void dsread( OutputArray Array, String dslabel,
const vector<int>& dims_offset,
const vector<int>& dims_counts = vector<int>() ) const = 0;
/** @brief Read specific dataset from hdf5 file into Mat object.
@param Array Mat container where data reads will be returned.
@param dslabel specify the source hdf5 dataset label.
@param dims_offset each array member specify the offset location over
each dimensions from where dataset starts to read into OutputArray.
@param dims_counts each array member specify the amount over dataset's each
dimensions of dataset to read into OutputArray.
Reads out Mat object reflecting the stored dataset.
@note If hdf5 file does not exist an exception will be thrown. Use hlexists() to check dataset presence.
It is thread safe.
- Example below reads a dataset:
@code{.cpp}
// open hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// blank Mat container
cv::Mat H;
// read hibert dataset
h5io->read( H, "hilbert" );
// release
h5io->close();
@endcode
- Example below perform read of 3x5 submatrix from second row and third element.
@code{.cpp}
// open hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// blank Mat container
cv::Mat H;
int offset[2] = { 1, 2 };
int counts[2] = { 3, 5 };
// read hibert dataset
h5io->read( H, "hilbert", offset, counts );
// release
h5io->close();
@endcode
*/
CV_WRAP virtual void dsread( OutputArray Array, String dslabel,
const int* dims_offset, const int* dims_counts ) const = 0;
/** @brief Fetch keypoint dataset size
@param kplabel specify the hdf5 dataset label to be measured.
@param dims_flag will fetch dataset dimensions on H5_GETDIMS, and dataset maximum dimensions on H5_GETMAXDIMS.
Returns size of keypoints dataset.
@note Resulting size will match the amount of keypoints. By default H5_GETDIMS will return actual dataset dimension.
Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match actual dataset dimension but can hold
H5_UNLIMITED value if dataset was prepared in **unlimited** mode. It can be useful to check existing dataset dimension
before overwrite it as whole or subset. Trying to write with oversized source data into dataset target will thrown
exception. The H5_GETCHUNKDIMS will return the dimension of chunk if dataset was created with chunking options otherwise
returned vector size will be zero.
*/
CV_WRAP virtual int kpgetsize( String kplabel, int dims_flag = HDF5::H5_GETDIMS ) const = 0;
/** @brief Create and allocate special storage for cv::KeyPoint dataset.
@param size declare fixed number of KeyPoints
@param kplabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten.
@param compresslevel specify the compression level 0-9 to be used, H5_NONE is default and means no compression.
@param chunks each array member specify chunking sizes to be used for block i/o,
H5_NONE is default and means no compression.
@note If the dataset already exists an exception will be thrown. Existence of the dataset can be checked
using hlexists().
- See example below that creates space for 100 keypoints in the dataset:
@code{.cpp}
// open hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
if ( ! h5io->hlexists( "keypoints" ) )
h5io->kpcreate( 100, "keypoints" );
else
printf("DS already created, skipping\n" );
@endcode
@note A value of H5_UNLIMITED for **size** means **unlimited** keypoints, thus is possible to expand anytime such
dataset by adding or inserting. Presence of H5_UNLIMITED **require** to define custom chunking. No default chunking
will be defined in unlimited scenario since default size on that dimension will be zero, and will grow once dataset
is written. Writing into dataset that have H5_UNLIMITED on some of its dimension requires kpinsert() that allow
growth on unlimited dimension instead of kpwrite() that allows to write only in predefined data space.
- See example below that creates unlimited space for keypoints chunking size of 100 but no compression:
@code{.cpp}
// open hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
if ( ! h5io->hlexists( "keypoints" ) )
h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", cv::hdf::HDF5::H5_NONE, 100 );
else
printf("DS already created, skipping\n" );
@endcode
*/
virtual void kpcreate( const int size, String kplabel,
const int compresslevel = H5_NONE, const int chunks = H5_NONE ) const = 0;
/** @brief Write or overwrite list of KeyPoint into specified dataset of hdf5 file.
@param keypoints specify keypoints data list to be written.
@param kplabel specify the target hdf5 dataset label.
@param offset specify the offset location on dataset from where keypoints will be (over)written into dataset.
@param counts specify the amount of keypoints that will be written into dataset.
Writes vector<KeyPoint> object into targeted dataset.
@note If dataset is not created and does not exist it will be created **automatically**. It is thread safe but
it is recommended that writes to happen over separate non overlapping regions. Multiple datasets can be written
inside single hdf5 file.
- Example below writes a 100 keypoints into a dataset. No dataset precreation required. If routine is called multiple
times dataset will be just overwritten:
@code{.cpp}
// generate 100 dummy keypoints
std::vector<cv::KeyPoint> keypoints;
for(int i = 0; i < 100; i++)
keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// write / overwrite dataset
h5io->kpwrite( keypoints, "keypoints" );
// release
h5io->close();
@endcode
- Example below uses smaller set of 50 keypoints and writes into compressed space of 100 keypoints optimised by 10 chunks.
Same keypoint set is written three times, first into first half (0->50) and at second half (50->75) then into remaining slots
(75->99) of data space using offset and count parameters to settle the window for write access.If routine is called multiple times
dataset will be just overwritten:
@code{.cpp}
// generate 50 dummy keypoints
std::vector<cv::KeyPoint> keypoints;
for(int i = 0; i < 50; i++)
keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// create maximum compressed space of size 100 with chunk size 10
h5io->kpcreate( 100, "keypoints", 9, 10 );
// write into first half
h5io->kpwrite( keypoints, "keypoints", 0 );
// write first 25 keypoints into second half
h5io->kpwrite( keypoints, "keypoints", 50, 25 );
// write first 25 keypoints into remained space of second half
h5io->kpwrite( keypoints, "keypoints", 75, 25 );
// release
h5io->close();
@endcode
*/
virtual void kpwrite( const vector<KeyPoint> keypoints, String kplabel,
const int offset = H5_NONE, const int counts = H5_NONE ) const = 0;
/** @brief Insert or overwrite list of KeyPoint into specified dataset and autoexpand dataset size if **unlimited** property allows.
@param keypoints specify keypoints data list to be written.
@param kplabel specify the target hdf5 dataset label.
@param offset specify the offset location on dataset from where keypoints will be (over)written into dataset.
@param counts specify the amount of keypoints that will be written into dataset.
Writes vector<KeyPoint> object into targeted dataset and **autoexpand** dataset dimension if allowed.
@note Unlike kpwrite(), datasets are **not** created **automatically**. If dsinsert() happen over outer region of dataset
and dataset has been created in **unlimited** mode then dataset is expanded, otherwise exception is thrown. To create datasets
with **unlimited** property see kpcreate() and the optional H5_UNLIMITED flag at creation time. It is not thread safe over same
dataset but multiple datasets can be merged inside single hdf5 file.
- Example below creates **unlimited** space for keypoints storage, and inserts a list of 10 keypoints ten times into that space.
Final dataset will have 100 keypoints. Chunks size is 10 just optimized against list of keypoints. If routine is called multiple
times dataset will be just overwritten:
@code{.cpp}
// generate 10 dummy keypoints
std::vector<cv::KeyPoint> keypoints;
for(int i = 0; i < 10; i++)
keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// create unlimited size space with chunk size of 10
h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", -1, 10 );
// insert 10 times same 10 keypoints
for(int i = 0; i < 10; i++)
h5io->kpinsert( keypoints, "keypoints", i * 10 );
// release
h5io->close();
@endcode
*/
virtual void kpinsert( const vector<KeyPoint> keypoints, String kplabel,
const int offset = H5_NONE, const int counts = H5_NONE ) const = 0;
/** @brief Read specific keypoint dataset from hdf5 file into vector<KeyPoint> object.
@param keypoints vector<KeyPoint> container where data reads will be returned.
@param kplabel specify the source hdf5 dataset label.
@param offset specify the offset location over dataset from where read starts.
@param counts specify the amount of keypoints from dataset to read.
Reads out vector<KeyPoint> object reflecting the stored dataset.
@note If hdf5 file does not exist an exception will be thrown. Use hlexists() to check dataset presence.
It is thread safe.
- Example below reads a dataset containing keypoints starting with second entry:
@code{.cpp}
// open hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// blank KeyPoint container
std::vector<cv::KeyPoint> keypoints;
// read keypoints starting second one
h5io->kpread( keypoints, "keypoints", 1 );
// release
h5io->close();
@endcode
- Example below perform read of 3 keypoints from second entry.
@code{.cpp}
// open hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// blank KeyPoint container
std::vector<cv::KeyPoint> keypoints;
// read three keypoints starting second one
h5io->kpread( keypoints, "keypoints", 1, 3 );
// release
h5io->close();
@endcode
*/
virtual void kpread( vector<KeyPoint>& keypoints, String kplabel,
const int offset = H5_NONE, const int counts = H5_NONE ) const = 0;
};
/** @brief Open or create hdf5 file
@param HDF5Filename specify the HDF5 filename.
Returns pointer to the hdf5 object class
@note If hdf5 file does not exist it will be created. Any operations except dscreate() functions on object
will be thread safe. Multiple datasets can be created inside single hdf5 file, and can be accessed
from same hdf5 object from multiple instances as long read or write operations are done over
non-overlapping regions of dataset. Single hdf5 file also can be opened by multiple instances,
reads and writes can be instantiated at the same time as long non-overlapping regions are involved. Object
is released using close().
- Example below open and then release the file.
@code{.cpp}
// open / autocreate hdf5 file
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
// ...
// release
h5io->close();
@endcode

- Text dump (3x3 Hilbert matrix) of hdf5 dataset using **h5dump** tool:
@code{.txt}
$ h5dump test.h5
HDF5 "test.h5" {
GROUP "/" {
DATASET "hilbert" {
DATATYPE H5T_ARRAY { [2] H5T_IEEE_F64LE }
DATASPACE SIMPLE { ( 3, 3 ) / ( 3, 3 ) }
DATA {
(0,0): [ 1, -1 ], [ 0.5, -0.5 ], [ 0.333333, -0.333333 ],
(1,0): [ 0.5, -0.5 ], [ 0.333333, -0.333333 ], [ 0.25, -0.25 ],
(2,0): [ 0.333333, -0.333333 ], [ 0.25, -0.25 ], [ 0.2, -0.2 ]
}
}
}
}
@endcode
*/
CV_EXPORTS_W Ptr<HDF5> open( String HDF5Filename );
//! @}
} // end namespace hdf
} // end namespace cv
#endif // _OPENCV_HDF5_HPP_
|