/usr/include/OTB-6.4/otbBinarySpectralAngleFunctor.h is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbBinarySpectralAngleFunctor_h
#define otbBinarySpectralAngleFunctor_h
#include <algorithm>
#include "otbMath.h"
namespace otb
{
/** \class BinarySpectralAngleFunctor
* \brief This functor computes the spectral angle between two pixels.
*
* It can be used as a functor in a BinaryFunctorImageFilter to
* compute the pixel-by-pixel spectral angles.
*
* \ingroup OTBImageManipulation
*/
namespace Functor
{
template<class TInput1, class TInput2, class TOutputValue>
class BinarySpectralAngleFunctor
{
public:
BinarySpectralAngleFunctor()
{
}
virtual ~BinarySpectralAngleFunctor() {}
// Binary operator
inline TOutputValue operator ()(const TInput1& a, const TInput2& b) const
{
const double Epsilon = 1E-10;
double dist = 0.0;
double scalarProd = 0.0;
double norma = 0.0;
double normb = 0.0;
double sqrtNormProd = 0.0;
for (unsigned int i = 0; i < std::min(a.Size(), b.Size()); ++i)
{
scalarProd += a[i] * b[i];
norma += a[i] * a[i];
normb += b[i] * b[i];
}
sqrtNormProd = vcl_sqrt(norma * normb);
if ( vcl_abs(sqrtNormProd) < Epsilon || scalarProd / sqrtNormProd > 1 )
{
dist = 0.0;
}
else
{
dist = vcl_acos(scalarProd / sqrtNormProd);
}
return static_cast<TOutputValue>(dist);
}
};
} // end namespace Functor
} // end namespace otb
#endif
|