/usr/include/OTB-6.4/otbDecisionTreeMachineLearningModel.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbDecisionTreeMachineLearningModel_txx
#define otbDecisionTreeMachineLearningModel_txx
#include "otbDecisionTreeMachineLearningModel.h"
#include "otbOpenCVUtils.h"
#include <fstream>
#include "itkMacro.h"
namespace otb
{
template <class TInputValue, class TOutputValue>
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::DecisionTreeMachineLearningModel() :
#ifdef OTB_OPENCV_3
m_DTreeModel(cv::ml::DTrees::create()),
m_MaxDepth(10),
m_MinSampleCount(10),
m_RegressionAccuracy(0.01),
m_UseSurrogates(false),
m_MaxCategories(10),
m_CVFolds(0),
#else
m_DTreeModel (new CvDTree),
m_MaxDepth(INT_MAX),
m_MinSampleCount(10),
m_RegressionAccuracy(0.01),
m_UseSurrogates(true),
m_MaxCategories(10),
m_CVFolds(10),
#endif
m_Use1seRule(true),
m_TruncatePrunedTree(true)
{
this->m_IsRegressionSupported = true;
}
template <class TInputValue, class TOutputValue>
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::~DecisionTreeMachineLearningModel()
{
#ifndef OTB_OPENCV_3
delete m_DTreeModel;
#endif
}
/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::Train()
{
//convert listsample to opencv matrix
cv::Mat samples;
otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);
cv::Mat labels;
otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(),labels);
cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U );
var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL) ); // all inputs are numerical
if (!this->m_RegressionMode) //Classification
var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;
#ifdef OTB_OPENCV_3
m_DTreeModel->setMaxDepth(m_MaxDepth);
m_DTreeModel->setMinSampleCount(m_MinSampleCount);
m_DTreeModel->setRegressionAccuracy(m_RegressionAccuracy);
m_DTreeModel->setUseSurrogates(m_UseSurrogates);
m_DTreeModel->setMaxCategories(m_MaxCategories);
m_DTreeModel->setCVFolds(m_CVFolds);
m_DTreeModel->setUse1SERule(m_Use1seRule);
m_DTreeModel->setTruncatePrunedTree(m_TruncatePrunedTree);
m_DTreeModel->setPriors(cv::Mat(m_Priors));
m_DTreeModel->train(cv::ml::TrainData::create(
samples,
cv::ml::ROW_SAMPLE,
labels,
cv::noArray(),
cv::noArray(),
cv::noArray(),
var_type));
#else
float * priors = m_Priors.empty() ? ITK_NULLPTR : &m_Priors.front();
CvDTreeParams params = CvDTreeParams(m_MaxDepth, m_MinSampleCount, m_RegressionAccuracy,
m_UseSurrogates, m_MaxCategories, m_CVFolds, m_Use1seRule, m_TruncatePrunedTree, priors);
//train the Decision Tree model
m_DTreeModel->train(samples,CV_ROW_SAMPLE,labels,cv::Mat(),cv::Mat(),var_type,cv::Mat(),params);
#endif
}
template <class TInputValue, class TOutputValue>
typename DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::TargetSampleType
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
TargetSampleType target;
//convert listsample to Mat
cv::Mat sample;
otb::SampleToMat<InputSampleType>(input,sample);
#ifdef OTB_OPENCV_3
double result = m_DTreeModel->predict(sample);
#else
double result = m_DTreeModel->predict(sample, cv::Mat(), false)->value;
#endif
target[0] = static_cast<TOutputValue>(result);
if (quality != ITK_NULLPTR)
{
if (!this->m_ConfidenceIndex)
{
itkExceptionMacro("Confidence index not available for this classifier !");
}
}
return target;
}
template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::Save(const std::string & filename, const std::string & name)
{
#ifdef OTB_OPENCV_3
cv::FileStorage fs(filename, cv::FileStorage::WRITE);
fs << (name.empty() ? m_DTreeModel->getDefaultName() : cv::String(name)) << "{";
m_DTreeModel->write(fs);
fs << "}";
fs.release();
#else
if (name == "")
m_DTreeModel->save(filename.c_str(), ITK_NULLPTR);
else
m_DTreeModel->save(filename.c_str(), name.c_str());
#endif
}
template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::Load(const std::string & filename, const std::string & name)
{
#ifdef OTB_OPENCV_3
cv::FileStorage fs(filename, cv::FileStorage::READ);
m_DTreeModel->read(name.empty() ? fs.getFirstTopLevelNode() : fs[name]);
#else
if (name == "")
m_DTreeModel->load(filename.c_str(), ITK_NULLPTR);
else
m_DTreeModel->load(filename.c_str(), name.c_str());
#endif
}
template <class TInputValue, class TOutputValue>
bool
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::CanReadFile(const std::string & file)
{
std::ifstream ifs;
ifs.open(file.c_str());
if(!ifs)
{
std::cerr<<"Could not read file "<<file<<std::endl;
return false;
}
while (!ifs.eof())
{
std::string line;
std::getline(ifs, line);
//if (line.find(m_SVMModel->getName()) != std::string::npos)
if (line.find(CV_TYPE_NAME_ML_TREE) != std::string::npos
#ifdef OTB_OPENCV_3
|| line.find(m_DTreeModel->getDefaultName()) != std::string::npos
#endif
)
{
//std::cout<<"Reading a "<<CV_TYPE_NAME_ML_TREE<<" model"<<std::endl;
return true;
}
}
ifs.close();
return false;
}
template <class TInputValue, class TOutputValue>
bool
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
return false;
}
template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
// Call superclass implementation
Superclass::PrintSelf(os,indent);
}
} //end namespace otb
#endif
|