This file is indexed.

/usr/include/OTB-6.4/otbDecisionTreeMachineLearningModel.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbDecisionTreeMachineLearningModel_txx
#define otbDecisionTreeMachineLearningModel_txx

#include "otbDecisionTreeMachineLearningModel.h"
#include "otbOpenCVUtils.h"

#include <fstream>
#include "itkMacro.h"

namespace otb
{

template <class TInputValue, class TOutputValue>
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::DecisionTreeMachineLearningModel() :
#ifdef OTB_OPENCV_3
 m_DTreeModel(cv::ml::DTrees::create()),
 m_MaxDepth(10),
 m_MinSampleCount(10),
 m_RegressionAccuracy(0.01),
 m_UseSurrogates(false),
 m_MaxCategories(10),
 m_CVFolds(0),
#else
 m_DTreeModel (new CvDTree),
 m_MaxDepth(INT_MAX),
 m_MinSampleCount(10),
 m_RegressionAccuracy(0.01),
 m_UseSurrogates(true),
 m_MaxCategories(10),
 m_CVFolds(10),
#endif
 m_Use1seRule(true),
 m_TruncatePrunedTree(true)
{
  this->m_IsRegressionSupported = true;
}

template <class TInputValue, class TOutputValue>
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::~DecisionTreeMachineLearningModel()
{
#ifndef OTB_OPENCV_3
  delete m_DTreeModel;
#endif
}

/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::Train()
{
  //convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(),labels);

  cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U );
  var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL) ); // all inputs are numerical

  if (!this->m_RegressionMode) //Classification
    var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;

#ifdef OTB_OPENCV_3
  m_DTreeModel->setMaxDepth(m_MaxDepth);
  m_DTreeModel->setMinSampleCount(m_MinSampleCount);
  m_DTreeModel->setRegressionAccuracy(m_RegressionAccuracy);
  m_DTreeModel->setUseSurrogates(m_UseSurrogates);
  m_DTreeModel->setMaxCategories(m_MaxCategories);
  m_DTreeModel->setCVFolds(m_CVFolds);
  m_DTreeModel->setUse1SERule(m_Use1seRule);
  m_DTreeModel->setTruncatePrunedTree(m_TruncatePrunedTree);
  m_DTreeModel->setPriors(cv::Mat(m_Priors));
  m_DTreeModel->train(cv::ml::TrainData::create(
    samples,
    cv::ml::ROW_SAMPLE,
    labels,
    cv::noArray(),
    cv::noArray(),
    cv::noArray(),
    var_type));
#else
  float * priors = m_Priors.empty() ? ITK_NULLPTR : &m_Priors.front();

  CvDTreeParams params = CvDTreeParams(m_MaxDepth, m_MinSampleCount, m_RegressionAccuracy,
                                       m_UseSurrogates, m_MaxCategories, m_CVFolds, m_Use1seRule, m_TruncatePrunedTree, priors);

  //train the Decision Tree model
  m_DTreeModel->train(samples,CV_ROW_SAMPLE,labels,cv::Mat(),cv::Mat(),var_type,cv::Mat(),params);
#endif
}

template <class TInputValue, class TOutputValue>
typename DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::TargetSampleType
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
  TargetSampleType target;

  //convert listsample to Mat
  cv::Mat sample;

  otb::SampleToMat<InputSampleType>(input,sample);
#ifdef OTB_OPENCV_3
  double result = m_DTreeModel->predict(sample);
#else
  double result = m_DTreeModel->predict(sample, cv::Mat(), false)->value;
#endif

  target[0] = static_cast<TOutputValue>(result);

  if (quality != ITK_NULLPTR)
    {
    if (!this->m_ConfidenceIndex)
      {
      itkExceptionMacro("Confidence index not available for this classifier !");
      }
    }

  return target;
}

template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::Save(const std::string & filename, const std::string & name)
{
#ifdef OTB_OPENCV_3
  cv::FileStorage fs(filename, cv::FileStorage::WRITE);
  fs << (name.empty() ? m_DTreeModel->getDefaultName() : cv::String(name)) << "{";
  m_DTreeModel->write(fs);
  fs << "}";
  fs.release();
#else
  if (name == "")
    m_DTreeModel->save(filename.c_str(), ITK_NULLPTR);
  else
    m_DTreeModel->save(filename.c_str(), name.c_str());
#endif
}

template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::Load(const std::string & filename, const std::string & name)
{
#ifdef OTB_OPENCV_3
  cv::FileStorage fs(filename, cv::FileStorage::READ);
  m_DTreeModel->read(name.empty() ? fs.getFirstTopLevelNode() : fs[name]);
#else
  if (name == "")
    m_DTreeModel->load(filename.c_str(), ITK_NULLPTR);
  else
    m_DTreeModel->load(filename.c_str(), name.c_str());
#endif
}

template <class TInputValue, class TOutputValue>
bool
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::CanReadFile(const std::string & file)
{
  std::ifstream ifs;
  ifs.open(file.c_str());

  if(!ifs)
  {
    std::cerr<<"Could not read file "<<file<<std::endl;
    return false;
  }

  while (!ifs.eof())
  {
    std::string line;
    std::getline(ifs, line);

    //if (line.find(m_SVMModel->getName()) != std::string::npos)
    if (line.find(CV_TYPE_NAME_ML_TREE) != std::string::npos
#ifdef OTB_OPENCV_3
        || line.find(m_DTreeModel->getDefaultName()) != std::string::npos
#endif
      )
    {
       //std::cout<<"Reading a "<<CV_TYPE_NAME_ML_TREE<<" model"<<std::endl;
       return true;
    }
  }
  ifs.close();
  return false;
}

template <class TInputValue, class TOutputValue>
bool
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
  return false;
}

template <class TInputValue, class TOutputValue>
void
DecisionTreeMachineLearningModel<TInputValue,TOutputValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os,indent);
}

} //end namespace otb

#endif