This file is indexed.

/usr/include/OTB-6.4/otbLearningApplicationBase.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbLearningApplicationBase_txx
#define otbLearningApplicationBase_txx

#include "otbLearningApplicationBase.h"
// only need this filter as a dummy process object
#include "otbRGBAPixelConverter.h"

namespace otb
{
namespace Wrapper
{

template <class TInputValue, class TOutputValue>
LearningApplicationBase<TInputValue,TOutputValue>
::LearningApplicationBase() : m_RegressionFlag(false)

{
}

template <class TInputValue, class TOutputValue>
LearningApplicationBase<TInputValue,TOutputValue>
::~LearningApplicationBase()
{
  ModelFactoryType::CleanFactories();
}

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::DoInit()
{
  AddDocTag(Tags::Learning);

  // main choice parameter that will contain all machine learning options
  AddParameter(ParameterType_Choice, "classifier", "Classifier to use for the training");
  SetParameterDescription("classifier", "Choice of the classifier to use for the training.");

  InitSupervisedClassifierParams();
  m_SupervisedClassifier = GetChoiceKeys("classifier");

  InitUnsupervisedClassifierParams();
  std::vector<std::string> allClassifier = GetChoiceKeys("classifier");
  // Check for empty unsupervised classifier
  if( allClassifier.size() > m_UnsupervisedClassifier.size() )
    m_UnsupervisedClassifier.assign( allClassifier.begin() + m_SupervisedClassifier.size(), allClassifier.end() );
}

template <class TInputValue, class TOutputValue>
typename LearningApplicationBase<TInputValue,TOutputValue>::ClassifierCategory
LearningApplicationBase<TInputValue,TOutputValue>
::GetClassifierCategory()
{
  if( m_UnsupervisedClassifier.empty() )
    {
    return Supervised;
    }
  else
    {
    bool foundUnsupervised = std::find( m_UnsupervisedClassifier.begin(), m_UnsupervisedClassifier.end(),
                                        GetParameterString( "classifier" ) ) != m_UnsupervisedClassifier.end();
    return foundUnsupervised ? Unsupervised : Supervised;
    }
}

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitSupervisedClassifierParams()
{

  //Group LibSVM
#ifdef OTB_USE_LIBSVM
  InitLibSVMParams();
#endif

#ifdef OTB_USE_OPENCV
  // OpenCV SVM implementation is buggy with linear kernel
  // Users should use the libSVM implementation instead.
  // InitSVMParams();
  if (!m_RegressionFlag)
    {
    InitBoostParams();  // Regression not supported
    }
  InitDecisionTreeParams();
  InitGradientBoostedTreeParams();
  InitNeuralNetworkParams();
  if (!m_RegressionFlag)
    {
    InitNormalBayesParams(); // Regression not supported
    }
  InitRandomForestsParams();
  InitKNNParams();
#endif

#ifdef OTB_USE_SHARK
  InitSharkRandomForestsParams();
#endif
}

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitUnsupervisedClassifierParams()
{
#ifdef OTB_USE_SHARK
  InitSharkKMeansParams();
#endif
}

template <class TInputValue, class TOutputValue>
typename LearningApplicationBase<TInputValue,TOutputValue>
::TargetListSampleType::Pointer
LearningApplicationBase<TInputValue,TOutputValue>
::Classify(typename ListSampleType::Pointer validationListSample,
           std::string modelPath)
{
  // Setup fake reporter
  RGBAPixelConverter<int,int>::Pointer dummyFilter =
    RGBAPixelConverter<int,int>::New();
  dummyFilter->SetProgress(0.0f);
  this->AddProcess(dummyFilter,"Classify...");
  dummyFilter->InvokeEvent(itk::StartEvent());

  // load a machine learning model from file and predict the input sample list
  ModelPointerType model = ModelFactoryType::CreateMachineLearningModel(modelPath,
                                                                        ModelFactoryType::ReadMode);

  if (model.IsNull())
    {
    otbAppLogFATAL(<< "Error when loading model " << modelPath);
    }

  model->Load(modelPath);
  model->SetRegressionMode(this->m_RegressionFlag);

  typename TargetListSampleType::Pointer predictedList = model->PredictBatch(validationListSample, NULL);

  // update reporter
  dummyFilter->UpdateProgress(1.0f);
  dummyFilter->InvokeEvent(itk::EndEvent());

  return predictedList;
}

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::Train(typename ListSampleType::Pointer trainingListSample,
        typename TargetListSampleType::Pointer trainingLabeledListSample,
        std::string modelPath)
{
  // Setup fake reporter
  RGBAPixelConverter<int,int>::Pointer dummyFilter =
    RGBAPixelConverter<int,int>::New();
  dummyFilter->SetProgress(0.0f);
  this->AddProcess(dummyFilter,"Training model...");
  dummyFilter->InvokeEvent(itk::StartEvent());

  // get the name of the chosen machine learning model
  const std::string modelName = GetParameterString("classifier");
  // call specific train function
  if (modelName == "libsvm")
    {
	#ifdef OTB_USE_LIBSVM
    TrainLibSVM(trainingListSample, trainingLabeledListSample, modelPath);
    #else
    otbAppLogFATAL("Module LIBSVM is not installed. You should consider turning OTB_USE_LIBSVM on during cmake configuration.");
    #endif
    }
  if(modelName == "sharkrf")
    {
    #ifdef OTB_USE_SHARK
    TrainSharkRandomForests(trainingListSample,trainingLabeledListSample,modelPath);
    #else
    otbAppLogFATAL("Module SharkLearning is not installed. You should consider turning OTB_USE_SHARK on during cmake configuration.");
    #endif
    }
  else if(modelName == "sharkkm")
    {
    #ifdef OTB_USE_SHARK
    TrainSharkKMeans( trainingListSample, trainingLabeledListSample, modelPath );
    #else
    otbAppLogFATAL("Module SharkLearning is not installed. You should consider turning OTB_USE_SHARK on during cmake configuration.");
    #endif
    }
  else if (modelName == "svm")
    {
    #ifdef OTB_USE_OPENCV
    TrainSVM(trainingListSample, trainingLabeledListSample, modelPath);
    #else
    otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
    #endif
    }
  else if (modelName == "boost")
    {
	#ifdef OTB_USE_OPENCV
    TrainBoost(trainingListSample, trainingLabeledListSample, modelPath);
    #else
    otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
    #endif
    }
  else if (modelName == "dt")
    {
	#ifdef OTB_USE_OPENCV
    TrainDecisionTree(trainingListSample, trainingLabeledListSample, modelPath);
    #else
    otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
    #endif
    }
  else if (modelName == "gbt")
    {
	#ifdef OTB_USE_OPENCV
    TrainGradientBoostedTree(trainingListSample, trainingLabeledListSample, modelPath);
    #else
    otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
    #endif
    }
  else if (modelName == "ann")
    {
	#ifdef OTB_USE_OPENCV
    TrainNeuralNetwork(trainingListSample, trainingLabeledListSample, modelPath);
    #else
    otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
    #endif
    }
  else if (modelName == "bayes")
    {
	#ifdef OTB_USE_OPENCV
    TrainNormalBayes(trainingListSample, trainingLabeledListSample, modelPath);
    #else
    otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
    #endif
    }
  else if (modelName == "rf")
    {
	#ifdef OTB_USE_OPENCV
    TrainRandomForests(trainingListSample, trainingLabeledListSample, modelPath);
    #else
    otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
    #endif
    }
  else if (modelName == "knn")
    {
	#ifdef OTB_USE_OPENCV
    TrainKNN(trainingListSample, trainingLabeledListSample, modelPath);
    #else
    otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
    #endif
    }

  // update reporter
  dummyFilter->UpdateProgress(1.0f);
  dummyFilter->InvokeEvent(itk::EndEvent());
}

}
}

#endif