/usr/include/OTB-6.4/otbLearningApplicationBase.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbLearningApplicationBase_txx
#define otbLearningApplicationBase_txx
#include "otbLearningApplicationBase.h"
// only need this filter as a dummy process object
#include "otbRGBAPixelConverter.h"
namespace otb
{
namespace Wrapper
{
template <class TInputValue, class TOutputValue>
LearningApplicationBase<TInputValue,TOutputValue>
::LearningApplicationBase() : m_RegressionFlag(false)
{
}
template <class TInputValue, class TOutputValue>
LearningApplicationBase<TInputValue,TOutputValue>
::~LearningApplicationBase()
{
ModelFactoryType::CleanFactories();
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::DoInit()
{
AddDocTag(Tags::Learning);
// main choice parameter that will contain all machine learning options
AddParameter(ParameterType_Choice, "classifier", "Classifier to use for the training");
SetParameterDescription("classifier", "Choice of the classifier to use for the training.");
InitSupervisedClassifierParams();
m_SupervisedClassifier = GetChoiceKeys("classifier");
InitUnsupervisedClassifierParams();
std::vector<std::string> allClassifier = GetChoiceKeys("classifier");
// Check for empty unsupervised classifier
if( allClassifier.size() > m_UnsupervisedClassifier.size() )
m_UnsupervisedClassifier.assign( allClassifier.begin() + m_SupervisedClassifier.size(), allClassifier.end() );
}
template <class TInputValue, class TOutputValue>
typename LearningApplicationBase<TInputValue,TOutputValue>::ClassifierCategory
LearningApplicationBase<TInputValue,TOutputValue>
::GetClassifierCategory()
{
if( m_UnsupervisedClassifier.empty() )
{
return Supervised;
}
else
{
bool foundUnsupervised = std::find( m_UnsupervisedClassifier.begin(), m_UnsupervisedClassifier.end(),
GetParameterString( "classifier" ) ) != m_UnsupervisedClassifier.end();
return foundUnsupervised ? Unsupervised : Supervised;
}
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitSupervisedClassifierParams()
{
//Group LibSVM
#ifdef OTB_USE_LIBSVM
InitLibSVMParams();
#endif
#ifdef OTB_USE_OPENCV
// OpenCV SVM implementation is buggy with linear kernel
// Users should use the libSVM implementation instead.
// InitSVMParams();
if (!m_RegressionFlag)
{
InitBoostParams(); // Regression not supported
}
InitDecisionTreeParams();
InitGradientBoostedTreeParams();
InitNeuralNetworkParams();
if (!m_RegressionFlag)
{
InitNormalBayesParams(); // Regression not supported
}
InitRandomForestsParams();
InitKNNParams();
#endif
#ifdef OTB_USE_SHARK
InitSharkRandomForestsParams();
#endif
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitUnsupervisedClassifierParams()
{
#ifdef OTB_USE_SHARK
InitSharkKMeansParams();
#endif
}
template <class TInputValue, class TOutputValue>
typename LearningApplicationBase<TInputValue,TOutputValue>
::TargetListSampleType::Pointer
LearningApplicationBase<TInputValue,TOutputValue>
::Classify(typename ListSampleType::Pointer validationListSample,
std::string modelPath)
{
// Setup fake reporter
RGBAPixelConverter<int,int>::Pointer dummyFilter =
RGBAPixelConverter<int,int>::New();
dummyFilter->SetProgress(0.0f);
this->AddProcess(dummyFilter,"Classify...");
dummyFilter->InvokeEvent(itk::StartEvent());
// load a machine learning model from file and predict the input sample list
ModelPointerType model = ModelFactoryType::CreateMachineLearningModel(modelPath,
ModelFactoryType::ReadMode);
if (model.IsNull())
{
otbAppLogFATAL(<< "Error when loading model " << modelPath);
}
model->Load(modelPath);
model->SetRegressionMode(this->m_RegressionFlag);
typename TargetListSampleType::Pointer predictedList = model->PredictBatch(validationListSample, NULL);
// update reporter
dummyFilter->UpdateProgress(1.0f);
dummyFilter->InvokeEvent(itk::EndEvent());
return predictedList;
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::Train(typename ListSampleType::Pointer trainingListSample,
typename TargetListSampleType::Pointer trainingLabeledListSample,
std::string modelPath)
{
// Setup fake reporter
RGBAPixelConverter<int,int>::Pointer dummyFilter =
RGBAPixelConverter<int,int>::New();
dummyFilter->SetProgress(0.0f);
this->AddProcess(dummyFilter,"Training model...");
dummyFilter->InvokeEvent(itk::StartEvent());
// get the name of the chosen machine learning model
const std::string modelName = GetParameterString("classifier");
// call specific train function
if (modelName == "libsvm")
{
#ifdef OTB_USE_LIBSVM
TrainLibSVM(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module LIBSVM is not installed. You should consider turning OTB_USE_LIBSVM on during cmake configuration.");
#endif
}
if(modelName == "sharkrf")
{
#ifdef OTB_USE_SHARK
TrainSharkRandomForests(trainingListSample,trainingLabeledListSample,modelPath);
#else
otbAppLogFATAL("Module SharkLearning is not installed. You should consider turning OTB_USE_SHARK on during cmake configuration.");
#endif
}
else if(modelName == "sharkkm")
{
#ifdef OTB_USE_SHARK
TrainSharkKMeans( trainingListSample, trainingLabeledListSample, modelPath );
#else
otbAppLogFATAL("Module SharkLearning is not installed. You should consider turning OTB_USE_SHARK on during cmake configuration.");
#endif
}
else if (modelName == "svm")
{
#ifdef OTB_USE_OPENCV
TrainSVM(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "boost")
{
#ifdef OTB_USE_OPENCV
TrainBoost(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "dt")
{
#ifdef OTB_USE_OPENCV
TrainDecisionTree(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "gbt")
{
#ifdef OTB_USE_OPENCV
TrainGradientBoostedTree(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "ann")
{
#ifdef OTB_USE_OPENCV
TrainNeuralNetwork(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "bayes")
{
#ifdef OTB_USE_OPENCV
TrainNormalBayes(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "rf")
{
#ifdef OTB_USE_OPENCV
TrainRandomForests(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
else if (modelName == "knn")
{
#ifdef OTB_USE_OPENCV
TrainKNN(trainingListSample, trainingLabeledListSample, modelPath);
#else
otbAppLogFATAL("Module OPENCV is not installed. You should consider turning OTB_USE_OPENCV on during cmake configuration.");
#endif
}
// update reporter
dummyFilter->UpdateProgress(1.0f);
dummyFilter->InvokeEvent(itk::EndEvent());
}
}
}
#endif
|