This file is indexed.

/usr/include/OTB-6.4/otbLibSVMMachineLearningModel.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbLibSVMMachineLearningModel_txx
#define otbLibSVMMachineLearningModel_txx

#include <fstream>
#include "otbLibSVMMachineLearningModel.h"
#include "otbSVMCrossValidationCostFunction.h"
#include "otbExhaustiveExponentialOptimizer.h"
#include "otbMacro.h"
#include "otbUtils.h"

namespace otb
{

template <class TInputValue, class TOutputValue>
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::LibSVMMachineLearningModel()
{
  this->SetSVMType(C_SVC);
  this->SetKernelType(LINEAR);
  this->SetPolynomialKernelDegree(3);
  this->SetKernelGamma(1.);  // 1/k
  this->SetKernelCoef0(1.);
  this->SetNu(0.5);
  this->SetC(1.0);
  this->SetEpsilon(1e-3);
  this->SetP(0.1);
  this->SetDoProbabilityEstimates(false);
  this->DoShrinking(true);
  this->SetCacheSize(40); // MB
  this->m_ParameterOptimization = false;
  this->m_IsRegressionSupported = true;
  this->SetCVFolders(5);
  this->m_InitialCrossValidationAccuracy = 0.;
  this->m_FinalCrossValidationAccuracy = 0.;
  this->m_CoarseOptimizationNumberOfSteps = 5;
  this->m_FineOptimizationNumberOfSteps = 5;
  this->m_ConfidenceMode =
    LibSVMMachineLearningModel<TInputValue,TOutputValue>::CM_INDEX;

  this->m_Parameters.nr_weight = 0;
  this->m_Parameters.weight_label = ITK_NULLPTR;
  this->m_Parameters.weight = ITK_NULLPTR;

  this->m_Model = ITK_NULLPTR;

  this->m_Problem.l = 0;
  this->m_Problem.y = ITK_NULLPTR;
  this->m_Problem.x = ITK_NULLPTR;
#ifndef OTB_SHOW_ALL_MSG_DEBUG
  svm_set_print_string_function(&otb::Utils::PrintNothing);
#endif
}

template <class TInputValue, class TOutputValue>
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::~LibSVMMachineLearningModel()
{
  this->DeleteModel();
  this->DeleteProblem();
}

/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::Train()
{
  this->DeleteProblem();
  this->DeleteModel();

  // Build problem
  this->BuildProblem();

  // Check consistency
  this->ConsistencyCheck();

  // Compute accuracy and eventually optimize parameters
  this->OptimizeParameters();

  // train the model
  m_Model = svm_train(&m_Problem, &m_Parameters);

  this->m_ConfidenceIndex = this->HasProbabilities();
}

template <class TInputValue, class TOutputValue>
typename LibSVMMachineLearningModel<TInputValue,TOutputValue>
::TargetSampleType
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
  TargetSampleType target;
  target.Fill(0);

  // Get type and number of classes
  int svm_type = svm_get_svm_type(m_Model);

  // Allocate nodes (/TODO if performances problems are related to too
  // many allocations, a cache approach can be set)
  struct svm_node * x = new struct svm_node[input.Size() + 1];

  // Fill the node
  for (unsigned int i = 0 ; i < input.Size() ; i++)
    {
    x[i].index = i + 1;
    x[i].value = input[i];
    }

  // terminate node
  x[input.Size()].index = -1;
  x[input.Size()].value = 0;

  if (quality != ITK_NULLPTR)
    {
    if (!this->m_ConfidenceIndex)
      {
      itkExceptionMacro("Confidence index not available for this classifier !");
      }
    if (this->m_ConfidenceMode == CM_INDEX)
      {
      if (svm_type == C_SVC || svm_type == NU_SVC)
        {
        // Eventually allocate space for probabilities
        unsigned int nr_class = svm_get_nr_class(m_Model);
        double *prob_estimates = new double[nr_class];
        // predict
        target[0] = static_cast<TargetValueType>(svm_predict_probability(m_Model, x, prob_estimates));
        double maxProb = 0.0;
        double secProb = 0.0;
        for (unsigned int i=0 ; i< nr_class ; ++i)
          {
          if (maxProb < prob_estimates[i])
            {
            secProb = maxProb;
            maxProb = prob_estimates[i];
            }
          else if (secProb < prob_estimates[i])
            {
            secProb = prob_estimates[i];
            }
          }
        (*quality) = static_cast<ConfidenceValueType>(maxProb - secProb);

        delete[] prob_estimates;
        }
      else
        {
        target[0] = static_cast<TargetValueType>(svm_predict(m_Model, x));
        // Prob. model for test data: target value = predicted value + z
        // z: Laplace distribution e^(-|z|/sigma)/(2sigma)
        // sigma is output as confidence index
        (*quality) = svm_get_svr_probability(m_Model);
        }
      }
    else if (this->m_ConfidenceMode == CM_PROBA)
      {
      target[0] = static_cast<TargetValueType>(svm_predict_probability(m_Model, x, quality));
      }
    else if (this->m_ConfidenceMode == CM_HYPER)
      {
      target[0] = static_cast<TargetValueType>(svm_predict_values(m_Model, x, quality));
      }
    }
  else
    {
    // default case : if the model has probabilities, we call svm_predict_probabilities()
    // which gives different results than svm_predict()
    if (svm_check_probability_model(m_Model))
      {
      unsigned int nr_class = svm_get_nr_class(m_Model);
      double *prob_estimates = new double[nr_class];
      target[0] = static_cast<TargetValueType>(svm_predict_probability(m_Model, x, prob_estimates));
      delete[] prob_estimates;
      }
    else
      {
      target[0] = static_cast<TargetValueType>(svm_predict(m_Model, x));
      }
    }

  // Free allocated memory
  delete[] x;

  return target;
}

template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::Save(const std::string & filename, const std::string & itkNotUsed(name))
{
  if (svm_save_model(filename.c_str(), m_Model) != 0)
    {
    itkExceptionMacro(<< "Problem while saving SVM model " << filename);
    }
}

template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::Load(const std::string & filename, const std::string & itkNotUsed(name))
{
  this->DeleteModel();
  m_Model = svm_load_model(filename.c_str());
  if (m_Model == ITK_NULLPTR)
    {
    itkExceptionMacro(<< "Problem while loading SVM model " << filename);
    }
  m_Parameters = m_Model->param;

  this->m_ConfidenceIndex = this->HasProbabilities();
}

template <class TInputValue, class TOutputValue>
bool
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::CanReadFile(const std::string & file)
{
  //TODO: Rework.
  std::ifstream ifs;
  ifs.open(file.c_str());

  if(!ifs)
    {
    std::cerr<<"Could not read file "<<file<<std::endl;
    return false;
    }

  //Read only the first line.
  std::string line;
  std::getline(ifs, line);

  //if (line.find(m_SVMModel->getName()) != std::string::npos)
  if (line.find("svm_type") != std::string::npos)
    {
    //std::cout<<"Reading a libSVM model"<<std::endl;
    return true;
    }
  ifs.close();
  return false;
}

template <class TInputValue, class TOutputValue>
bool
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
  return false;
}

template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os,indent);
}

template <class TInputValue, class TOutputValue>
bool
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::HasProbabilities(void) const
{
  bool modelHasProba = static_cast<bool>(svm_check_probability_model(m_Model));
  int type = svm_get_svm_type(m_Model);
  int cmMode = this->m_ConfidenceMode;
  bool ret = false;
  if (type == EPSILON_SVR || type == NU_SVR)
    {
    ret = (modelHasProba && cmMode == CM_INDEX);
    }
  else if (type == C_SVC || type == NU_SVC)
    {
    ret = (modelHasProba && (cmMode == CM_INDEX || cmMode == CM_PROBA)) ||
      (cmMode == CM_HYPER);
    }
  return ret;
}

template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::BuildProblem()
{
  // Get number of samples
  typename InputListSampleType::Pointer samples = this->GetInputListSample();
  typename TargetListSampleType::Pointer target = this->GetTargetListSample();
  int probl = samples->Size();

  if (probl < 1)
    {
    itkExceptionMacro(<< "No samples, can not build SVM problem.");
    }
  otbMsgDebugMacro(<< "Building problem ...");

  // Get the size of the samples
  long int elements = samples->GetMeasurementVectorSize();

  // Allocate the problem
  m_Problem.l = probl;
  m_Problem.y = new double[probl];
  m_Problem.x = new struct svm_node*[probl];
  for (int i = 0; i < probl; ++i)
    {
    m_Problem.x[i] = new struct svm_node[elements+1];
    }

  // Iterate on the samples
  typename InputListSampleType::ConstIterator sIt = samples->Begin();
  typename TargetListSampleType::ConstIterator tIt = target->Begin();
  int sampleIndex = 0;

  while (sIt != samples->End() && tIt != target->End())
    {
    // Set the label
    m_Problem.y[sampleIndex] = tIt.GetMeasurementVector()[0];
    const InputSampleType &sample = sIt.GetMeasurementVector();
    for (int k = 0 ; k < elements ; ++k)
      {
      m_Problem.x[sampleIndex][k].index = k + 1;
      m_Problem.x[sampleIndex][k].value = sample[k];
      }
    // terminate node
    m_Problem.x[sampleIndex][elements].index = -1;
    m_Problem.x[sampleIndex][elements].value = 0;

    ++sampleIndex;
    ++sIt;
    ++tIt;
    }

  // Compute the kernel gamma from number of elements if necessary
  if (this->GetKernelGamma() == 0)
    {
    this->SetKernelGamma(1.0 / static_cast<double>(elements));
    }

  // allocate buffer for cross validation
  m_TmpTarget.resize(m_Problem.l);
}

template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::ConsistencyCheck()
{
  if (this->GetSVMType() == ONE_CLASS && this->GetDoProbabilityEstimates())
    {
    otbMsgDebugMacro(<< "Disabling SVM probability estimates for ONE_CLASS SVM type.");
    this->SetDoProbabilityEstimates(false);
    }

  const char* error_msg = svm_check_parameter(&m_Problem, &m_Parameters);

  if (error_msg)
    {
    std::string err(error_msg);
    itkExceptionMacro("SVM parameter check failed : " << err);
    }
}

template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::DeleteProblem()
{
  if (m_Problem.y)
    {
    delete[] m_Problem.y;
    m_Problem.y = ITK_NULLPTR;
    }
  if (m_Problem.x)
    {
    for (int i = 0; i < m_Problem.l; ++i)
      {
      if (m_Problem.x[i])
        {
        delete[] m_Problem.x[i];
        }
      }
    delete[] m_Problem.x;
    m_Problem.x = ITK_NULLPTR;
    }
  m_Problem.l = 0;
}

template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::DeleteModel(void)
{
  if(m_Model)
    {
    svm_free_and_destroy_model(&m_Model);
    }
  m_Model = ITK_NULLPTR;
}

template <class TInputValue, class TOutputValue>
unsigned int
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::GetNumberOfKernelParameters()
{
  unsigned int nb = 1;
  switch(this->GetKernelType())
    {
    case LINEAR:
      // C
      nb = 1;
      break;
    case POLY:
      // C, gamma and coef0
      nb = 3;
      break;
    case RBF:
      // C and gamma
      nb = 2;
      break;
    case SIGMOID:
      // C, gamma and coef0
      nb = 3;
      break;
    default:
      // C
      nb = 1;
      break;
    }
  return nb;
}

template <class TInputValue, class TOutputValue>
double
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::CrossValidation(void)
{
  double accuracy = 0.0;
  // Get the length of the problem
  unsigned int length = m_Problem.l;
  if (length == 0 || m_TmpTarget.size() < length )
    return accuracy;

  // Do cross validation
  svm_cross_validation(&m_Problem, &m_Parameters, m_CVFolders, &m_TmpTarget[0]);

  // Evaluate accuracy
  double total_correct = 0.;
  for (unsigned int i = 0; i < length; ++i)
    {
    if (m_TmpTarget[i] == m_Problem.y[i])
      {
      ++total_correct;
      }
    }
  accuracy = total_correct / length;

  // return accuracy value
  return accuracy;
}

template <class TInputValue, class TOutputValue>
void
LibSVMMachineLearningModel<TInputValue,TOutputValue>
::OptimizeParameters()
{
  typedef SVMCrossValidationCostFunction<LibSVMMachineLearningModel<TInputValue,TOutputValue> > CrossValidationFunctionType;
  typename CrossValidationFunctionType::Pointer crossValidationFunction = CrossValidationFunctionType::New();
  crossValidationFunction->SetModel(this);

  typename CrossValidationFunctionType::ParametersType initialParameters, coarseBestParameters, fineBestParameters;

  unsigned int nbParams = this->GetNumberOfKernelParameters();
  initialParameters.SetSize(nbParams);
  initialParameters[0] = this->GetC();
  if (nbParams > 1) initialParameters[1] = this->GetKernelGamma();
  if (nbParams > 2) initialParameters[2] = this->GetKernelCoef0();

  m_InitialCrossValidationAccuracy = crossValidationFunction->GetValue(initialParameters);
  m_FinalCrossValidationAccuracy = m_InitialCrossValidationAccuracy;

  otbMsgDebugMacro(<< "Initial accuracy : " << m_InitialCrossValidationAccuracy
                   << ", Parameters Optimization" << m_ParameterOptimization);

  if (m_ParameterOptimization)
    {
    otbMsgDebugMacro(<< "Model parameters optimization");
    typename ExhaustiveExponentialOptimizer::Pointer coarseOptimizer = ExhaustiveExponentialOptimizer::New();
    typename ExhaustiveExponentialOptimizer::StepsType coarseNbSteps(initialParameters.Size());
    coarseNbSteps.Fill(m_CoarseOptimizationNumberOfSteps);

    coarseOptimizer->SetNumberOfSteps(coarseNbSteps);
    coarseOptimizer->SetCostFunction(crossValidationFunction);
    coarseOptimizer->SetInitialPosition(initialParameters);
    coarseOptimizer->StartOptimization();

    coarseBestParameters = coarseOptimizer->GetMaximumMetricValuePosition();

    otbMsgDevMacro( << "Coarse minimum accuracy: " << coarseOptimizer->GetMinimumMetricValue() << " " <<
      coarseOptimizer->GetMinimumMetricValuePosition() );
    otbMsgDevMacro( << "Coarse maximum accuracy: " << coarseOptimizer->GetMaximumMetricValue() << " " <<
      coarseOptimizer->GetMaximumMetricValuePosition() );

    typename ExhaustiveExponentialOptimizer::Pointer fineOptimizer = ExhaustiveExponentialOptimizer::New();
    typename ExhaustiveExponentialOptimizer::StepsType fineNbSteps(initialParameters.Size());
    fineNbSteps.Fill(m_FineOptimizationNumberOfSteps);

    double stepLength = 1. / static_cast<double>(m_FineOptimizationNumberOfSteps);

    fineOptimizer->SetNumberOfSteps(fineNbSteps);
    fineOptimizer->SetStepLength(stepLength);
    fineOptimizer->SetCostFunction(crossValidationFunction);
    fineOptimizer->SetInitialPosition(coarseBestParameters);
    fineOptimizer->StartOptimization();

    otbMsgDevMacro(<< "Fine minimum accuracy: " << fineOptimizer->GetMinimumMetricValue() << " " <<
      fineOptimizer->GetMinimumMetricValuePosition() );
    otbMsgDevMacro(<< "Fine maximum accuracy: " << fineOptimizer->GetMaximumMetricValue() << " " <<
      fineOptimizer->GetMaximumMetricValuePosition() );

    fineBestParameters = fineOptimizer->GetMaximumMetricValuePosition();

    m_FinalCrossValidationAccuracy = fineOptimizer->GetMaximumMetricValue();

    this->SetC(fineBestParameters[0]);
    if (nbParams > 1) this->SetKernelGamma(fineBestParameters[1]);
    if (nbParams > 2) this->SetKernelCoef0(fineBestParameters[2]);
    }
}

} //end namespace otb

#endif