/usr/include/OTB-6.4/otbNormalBayesMachineLearningModel.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbNormalBayesMachineLearningModel_txx
#define otbNormalBayesMachineLearningModel_txx
#include <fstream>
#include "itkMacro.h"
#include "otbNormalBayesMachineLearningModel.h"
#include "otbOpenCVUtils.h"
namespace otb
{
template <class TInputValue, class TOutputValue>
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::NormalBayesMachineLearningModel() :
#ifdef OTB_OPENCV_3
m_NormalBayesModel(cv::ml::NormalBayesClassifier::create())
#else
m_NormalBayesModel (new CvNormalBayesClassifier)
#endif
{
}
template <class TInputValue, class TOutputValue>
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::~NormalBayesMachineLearningModel()
{
#ifndef OTB_OPENCV_3
delete m_NormalBayesModel;
#endif
}
/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::Train()
{
//convert listsample to opencv matrix
cv::Mat samples;
otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);
cv::Mat labels;
otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(),labels);
#ifdef OTB_OPENCV_3
cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U );
var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL) ); // all inputs are numerical
var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;
m_NormalBayesModel->train(cv::ml::TrainData::create(
samples,
cv::ml::ROW_SAMPLE,
labels,
cv::noArray(),
cv::noArray(),
cv::noArray(),
var_type));
#else
m_NormalBayesModel->train(samples,labels,cv::Mat(),cv::Mat(),false);
#endif
}
template <class TInputValue, class TOutputValue>
typename NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::TargetSampleType
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::DoPredict(const InputSampleType & input, ConfidenceValueType *quality) const
{
TargetSampleType target;
//convert listsample to Mat
cv::Mat sample;
otb::SampleToMat<InputSampleType>(input,sample);
cv::Mat missing = cv::Mat(1,input.Size(), CV_8U );
missing.setTo(0);
double result = m_NormalBayesModel->predict(sample);
target[0] = static_cast<TOutputValue>(result);
if (quality != ITK_NULLPTR)
{
if (!this->HasConfidenceIndex())
{
itkExceptionMacro("Confidence index not available for this classifier !");
}
}
return target;
}
template <class TInputValue, class TOutputValue>
void
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::Save(const std::string & filename, const std::string & name)
{
#ifdef OTB_OPENCV_3
cv::FileStorage fs(filename, cv::FileStorage::WRITE);
fs << (name.empty() ? m_NormalBayesModel->getDefaultName() : cv::String(name)) << "{";
m_NormalBayesModel->write(fs);
fs << "}";
fs.release();
#else
if (name == "")
m_NormalBayesModel->save(filename.c_str(), ITK_NULLPTR);
else
m_NormalBayesModel->save(filename.c_str(), name.c_str());
#endif
}
template <class TInputValue, class TOutputValue>
void
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::Load(const std::string & filename, const std::string & name)
{
#ifdef OTB_OPENCV_3
cv::FileStorage fs(filename, cv::FileStorage::READ);
m_NormalBayesModel->read(name.empty() ? fs.getFirstTopLevelNode() : fs[name]);
#else
if (name == "")
m_NormalBayesModel->load(filename.c_str(), ITK_NULLPTR);
else
m_NormalBayesModel->load(filename.c_str(), name.c_str());
#endif
}
template <class TInputValue, class TOutputValue>
bool
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::CanReadFile(const std::string & file)
{
std::ifstream ifs;
ifs.open(file.c_str());
if(!ifs)
{
std::cerr<<"Could not read file "<<file<<std::endl;
return false;
}
while (!ifs.eof())
{
std::string line;
std::getline(ifs, line);
if (line.find(CV_TYPE_NAME_ML_NBAYES) != std::string::npos
#ifdef OTB_OPENCV_3
|| line.find(m_NormalBayesModel->getDefaultName()) != std::string::npos
#endif
)
{
//std::cout<<"Reading a "<<CV_TYPE_NAME_ML_NBAYES<<" model"<<std::endl;
return true;
}
}
ifs.close();
return false;
}
template <class TInputValue, class TOutputValue>
bool
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::CanWriteFile(const std::string & itkNotUsed(file))
{
return false;
}
template <class TInputValue, class TOutputValue>
void
NormalBayesMachineLearningModel<TInputValue,TOutputValue>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
// Call superclass implementation
Superclass::PrintSelf(os,indent);
}
} //end namespace otb
#endif
|