This file is indexed.

/usr/include/OTB-6.4/otbObjectDetectionClassifier.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbObjectDetectionClassifier_txx
#define otbObjectDetectionClassifier_txx

#include "otbObjectDetectionClassifier.h"

#include "itkContinuousIndex.h"

namespace otb
{

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::PersistentObjectDetectionClassifier()
  : m_NeighborhoodRadius(0),
    m_ClassKey("Class"),
    m_NoClassLabel(0),
    m_GridStep(10)
{
  this->SetNumberOfRequiredInputs(1);

  // Have 2 outputs : the image created by Superclass, a vector data with points
  this->SetNumberOfRequiredOutputs(3);
  this->itk::ProcessObject::SetNthOutput(1, this->MakeOutput(1).GetPointer());
  this->itk::ProcessObject::SetNthOutput(2, this->MakeOutput(2).GetPointer());
}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::~PersistentObjectDetectionClassifier()
{
}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
void
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::AllocateOutputs()
{
  // This is commented to prevent the streaming of the whole image for the first stream strip
  // It shall not cause any problem because the output image of this filter is not intended to be used.
  //InputImagePointer image = const_cast< TInputImage * >( this->GetInput() );
  //this->GraftOutput( image );
  // Nothing that needs to be allocated for the remaining outputs
}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
void
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::GenerateOutputInformation()
{
  Superclass::GenerateOutputInformation();
  if (this->GetInput())
    {
    this->GetOutput()->CopyInformation(this->GetInput());
    this->GetOutput()->SetLargestPossibleRegion(this->GetInput()->GetLargestPossibleRegion());

    if (this->GetOutput()->GetRequestedRegion().GetNumberOfPixels() == 0)
      {
      this->GetOutput()->SetRequestedRegion(this->GetOutput()->GetLargestPossibleRegion());
      }
    }
}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
void
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::SetModel(ModelType* model)
{
  if (model != m_Model)
    {
    m_Model = model;
    this->Modified();
    }
}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
const typename PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>::ModelType*
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::GetModel(void) const
{
  return m_Model;
}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
typename PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>::VectorDataType*
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::GetOutputVectorData()
{
  return static_cast<VectorDataType*>(this->itk::ProcessObject::GetOutput(1));
}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
itk::DataObject::Pointer
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::MakeOutput(DataObjectPointerArraySizeType idx)
{
  itk::DataObject::Pointer output;
  switch (idx)
    {
    case 0:
      output = static_cast<itk::DataObject*>(InputImageType::New().GetPointer());
      break;
    case 1:
      {
      output = static_cast<itk::DataObject*>(VectorDataType::New().GetPointer());
      break;
      }
    default:
      output = static_cast<itk::DataObject*>(InputImageType::New().GetPointer());
      break;
    }
  return output;
}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
void
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::Reset()
{
  m_ThreadPointArray = PointArrayContainer(this->GetNumberOfThreads());

}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
void
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::Synthetize()
{
  // merge all points in a single vector data
  //std::copy(m_ThreadPointArray[0].begin(), m_ThreadPointArray[0].end(),
  //std::ostream_iterator<DescriptorsFunctionPointType>(std::cout, "\n") );

  VectorDataType* vdata = this->GetOutputVectorData();

  // Retrieving root node
  VectorDataNodePointerType root = vdata->GetDataTree()->GetRoot()->Get();
  // Create the document node
  VectorDataNodePointerType document = VectorDataNodeType::New();
  document->SetNodeType(otb::DOCUMENT);
  VectorDataNodePointerType folder = VectorDataNodeType::New();
  folder->SetNodeType(otb::FOLDER);
  // Adding the layer to the data tree
  vdata->GetDataTree()->Add(document, root);
  vdata->GetDataTree()->Add(folder, document);

  for (itk::ThreadIdType threadId = 0; threadId < m_ThreadPointArray.size(); ++threadId)
    {
    PointArray& pointArray = m_ThreadPointArray[threadId];
    typename PointArray::const_iterator it = pointArray.begin();
    typename PointArray::const_iterator end = pointArray.end();

    for (; it != end; ++it)
      {
      VectorDataNodePointerType currentGeometry = VectorDataNodeType::New();
      currentGeometry->SetNodeId("FEATURE_POINT");
      currentGeometry->SetNodeType(otb::FEATURE_POINT);
      VectorDataPointType p;
      p[0] = it->first[0];
      p[1] = it->first[1];
      currentGeometry->SetPoint(p);
      currentGeometry->SetFieldAsInt(m_ClassKey, it->second);
      vdata->GetDataTree()->Add(currentGeometry, folder);
      }
    }
}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
void
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  Superclass::PrintSelf(os, indent);
}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
void
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::GenerateInputRequestedRegion()
{
  Superclass::GenerateInputRequestedRegion();

  // get pointers to the input and output
  typename Superclass::InputImagePointer inputPtr =
    const_cast< TInputImage * >( this->GetInput() );
  typename Superclass::OutputImagePointer outputPtr = this->GetOutput();

  if ( !inputPtr || !outputPtr )
    {
    return;
    }

  // get a copy of the input requested region (should equal the output
  // requested region)
  typename TInputImage::RegionType inputRequestedRegion;
  inputRequestedRegion = inputPtr->GetRequestedRegion();

  // pad the input requested region by the operator radius
  inputRequestedRegion.PadByRadius( m_NeighborhoodRadius + 1 );

  // crop the input requested region at the input's largest possible region
  if ( inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()) )
    {
    inputPtr->SetRequestedRegion( inputRequestedRegion );
    return;
    }
  else
    {
    // Couldn't crop the region (requested region is outside the largest
    // possible region).  Throw an exception.

    // store what we tried to request (prior to trying to crop)
    inputPtr->SetRequestedRegion( inputRequestedRegion );
    }
}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
void
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::BeforeThreadedGenerateData()
{
  // Compute the 1/(sigma) vector
  m_InvertedScales = m_Scales;
  for(unsigned int idx = 0; idx < m_Scales.Size(); ++idx)
    {
    if(m_Scales[idx]-1e-10 < 0.)
      m_InvertedScales[idx] = 0.;
    else
      m_InvertedScales[idx] = 1 / m_Scales[idx];
    }

}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionType>
void
PersistentObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionType>
::ThreadedGenerateData(const RegionType& outputRegionForThread,
                       itk::ThreadIdType threadId)
{
  InputImageType* input = static_cast<InputImageType*>(this->itk::ProcessObject::GetInput(0));
  const ModelType*   model = this->GetModel();

  typedef typename RegionType::IndexType      IndexType;
  IndexType begin = outputRegionForThread.GetIndex();
  IndexType end = begin;
  end[0] += outputRegionForThread.GetSize(0);
  end[1] += outputRegionForThread.GetSize(1);

  IndexType current = begin;
  for (; current[1] != end[1]; current[1]++)
    {
    if (current[1] % m_GridStep == 0)
      {
      for(current[0] = begin[0]; current[0] != end[0]; current[0]++)
        {
        if (current[0] % m_GridStep == 0)
          {
          DescriptorsFunctionPointType point;
          input->TransformIndexToPhysicalPoint(current, point);

          DescriptorType descriptor = m_DescriptorsFunction->Evaluate(point);
          ModelMeasurementType modelMeasurement(descriptor.GetSize());
          for (unsigned int i = 0; i < descriptor.GetSize(); ++i)
            {
            modelMeasurement[i] = (descriptor[i] - m_Shifts[i]) * m_InvertedScales[i];
            }
          LabelType label = (model->Predict(modelMeasurement))[0];

          if (label != m_NoClassLabel)
            {
            m_ThreadPointArray[threadId].push_back(std::make_pair(point, label));
            }
          }
        }
      }
    }
}


template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionPrecision, class TCoordRep>
ObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionPrecision, TCoordRep>
::ObjectDetectionClassifier()
{

}

template <class TInputImage, class TOutputVectorData, class TLabel, class TFunctionPrecision, class TCoordRep>
ObjectDetectionClassifier<TInputImage, TOutputVectorData, TLabel, TFunctionPrecision, TCoordRep>
::~ObjectDetectionClassifier()
{

}


} // end namespace otb

#endif