/usr/include/OTB-6.4/otbPeriodicSOM.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
* Copyright (C) 2007-2012 Institut Mines Telecom / Telecom Bretagne
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbPeriodicSOM_txx
#define otbPeriodicSOM_txx
#include "itkNumericTraits.h"
#include "itkNeighborhoodIterator.h"
#include "otbPeriodicSOM.h"
namespace otb
{
/**
* Update the output map with a new sample.
* \param sample The new sample to learn,
* \param beta The learning coefficient,
* \param radius The radius of the neighbourhood.
*/
template <class TListSample, class TMap,
class TSOMLearningBehaviorFunctor,
class TSOMNeighborhoodBehaviorFunctor>
void
PeriodicSOM<TListSample, TMap, TSOMLearningBehaviorFunctor, TSOMNeighborhoodBehaviorFunctor>
::UpdateMap(const NeuronType& sample, double beta, SizeType& radius)
{
unsigned int i, j;
// output map pointer
MapPointerType map = this->GetOutput(0);
// winner index in the map
IndexType position = map->GetWinner(sample);
NeuronType winner = map->GetPixel(position);
// Local neighborhood definition
typedef typename MapType::Superclass ImageMapType;
typedef itk::NeighborhoodIterator<ImageMapType> NeighborhoodIteratorType;
typename MapType::RegionType mapRegion = map->GetLargestPossibleRegion();
NeighborhoodIteratorType it(radius, map, mapRegion);
// Here, the periodic update is achieved 'by hand' since
// PeriodicBoundaryCondition does not allow modifying
// VectorImage contents
SizeType mapSize = mapRegion.GetSize();
IndexType positionToUpdate;
// Iterate over the neighborhood of the winner neuron
it.SetLocation(position);
for (i = 0; i < it.Size(); ++i)
{
typename NeighborhoodIteratorType::OffsetType offset = it.GetOffset(i);
// The neighborhood is of elliptic shape
double theDistance = itk::NumericTraits<double>::Zero;
for (j = 0; j < MapType::ImageDimension; ++j)
theDistance += pow(static_cast<double>(offset[j]), 2.0)
/ pow(static_cast<double>(radius[j]), 2.0);
if (theDistance <= 1.0)
{
for (j = 0; j < MapType::ImageDimension; ++j)
{
int pos = offset[j] + position[j];
positionToUpdate[j] = (pos >= 0) ?
pos % mapSize[j] :
(mapSize[j] - ((-pos) % mapSize[j])) % mapSize[j];
}
NeuronType tempNeuron = it.GetPixel(i);
// NeuronType newNeuron ( tempNeuron.Size() );
// newNeuron.Fill( 0.0 ); // FIXME
NeuronType newNeuron(tempNeuron);
double tempBeta = beta / (1.0 + theDistance);
for (j = 0; j < newNeuron.Size(); ++j)
{
newNeuron[j] += static_cast<typename NeuronType::ValueType>(
(sample[j] - tempNeuron[j]) * tempBeta);
}
map->SetPixel(positionToUpdate, newNeuron);
}
}
}
} // end of namespace otb
#endif
|