/usr/include/OTB-6.4/otbSarRadiometricCalibrationFunction.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbSarRadiometricCalibrationFunction_txx
#define otbSarRadiometricCalibrationFunction_txx
#include "otbSarRadiometricCalibrationFunction.h"
#include "itkNumericTraits.h"
namespace otb
{
/**
* Constructor
*/
template <class TInputImage, class TCoordRep>
SarRadiometricCalibrationFunction<TInputImage, TCoordRep>
::SarRadiometricCalibrationFunction()
: m_Scale(1.0)
, m_EnableNoise(false)
, m_RescalingFactor(1.0)
, m_ApplyAntennaPatternGain(true)
, m_ApplyIncidenceAngleCorrection(true)
, m_ApplyRangeSpreadLossCorrection(true)
, m_ApplyLookupDataCorrection(false)
, m_ApplyRescalingFactor(false)
{
/* initialize parametric functions */
m_Noise = ParametricFunctionType::New();
m_AntennaPatternNewGain = ParametricFunctionType::New();
m_AntennaPatternOldGain = ParametricFunctionType::New();
m_IncidenceAngle = ParametricFunctionType::New();
m_RangeSpreadLoss = ParametricFunctionType::New();
/* initialize default values in paramerticFunction instances */
m_Noise->SetConstantValue(0.0);
m_AntennaPatternNewGain->SetConstantValue(1.0);
m_AntennaPatternOldGain->SetConstantValue(1.0);
m_IncidenceAngle->SetConstantValue(CONST_PI_2);
m_RangeSpreadLoss->SetConstantValue(1.0);
// m_Lut = 0; //new LookupTableBase();
}
/**
* Initialize by setting the input image
*/
template <class TInputImage, class TCoordRep>
void
SarRadiometricCalibrationFunction<TInputImage, TCoordRep>
::SetInputImage(
const InputImageType * ptr )
{
Superclass::SetInputImage(ptr);
m_Noise->SetInputImage(ptr);
m_IncidenceAngle->SetInputImage(ptr);
m_AntennaPatternNewGain->SetInputImage(ptr);
m_AntennaPatternOldGain->SetInputImage(ptr);
m_RangeSpreadLoss->SetInputImage(ptr);
}
/**
* Print
*/
template <class TInputImage, class TCoordRep>
void
SarRadiometricCalibrationFunction<TInputImage, TCoordRep>
::PrintSelf(std::ostream& os, itk::Indent indent) const
{
this->Superclass::PrintSelf(os, indent);
}
/* Function: EvaluateAtIndex. This computes the required values for each pixel
* whose index is given in indexType argument. To convert index to point it uses
* InputImage::TransformIndexToPhysicalPoint(). IncidenceAngle and similar are
* computed based on this calculated point in SarParametricFunction */
template <class TInputImage, class TCoordRep>
typename SarRadiometricCalibrationFunction<TInputImage, TCoordRep>
::OutputType
SarRadiometricCalibrationFunction<TInputImage, TCoordRep>
::EvaluateAtIndex(const IndexType& index) const
{
if (!this->IsInsideBuffer(index))
{
itkDebugMacro( << "ERROR with IsInsideBuffer");
return (itk::NumericTraits<OutputType>::max());
}
/* convert index to point */
PointType point;
if (m_ApplyAntennaPatternGain || m_ApplyIncidenceAngleCorrection || m_ApplyRangeSpreadLossCorrection)
this->GetInputImage()->TransformIndexToPhysicalPoint( index, point);
/** digitalNumber:
* For complex pixel type, vcl_abs() returns the modulus. which is
* sqrt((I*I) + (Q*Q)). Where I and Q are real and imaginary part of the
* complex pixel. So to to get (I*I) + (Q*Q) in our calculation, the output
* of vcl_abs() is squared. See below (digitalNumber * digitalNumber) where
* digitalNumber is the output of vcl_abs() which is sqrt((I*I) + (Q*Q)). For
* non-complex pixel types, vcl_abs() simply returns absolute value.
*/
const std::complex<float> pVal = this->GetInputImage()->GetPixel(index);
const RealType digitalNumber = std::sqrt((pVal.real() * pVal.real()) + (pVal.imag()* pVal.imag()));
RealType sigma = m_Scale * digitalNumber * digitalNumber;
/** subtract noise if enabled. */
if (m_EnableNoise)
{
sigma -= static_cast<RealType>(m_Noise->Evaluate(point));
}
/** Apply incidence angle correction if needed */
if (m_ApplyIncidenceAngleCorrection)
{
sigma *= vcl_sin(static_cast<RealType>(m_IncidenceAngle->Evaluate(point)));
}
/** Apply old and new antenna pattern gain. */
if (m_ApplyAntennaPatternGain)
{
sigma *= static_cast<RealType>(m_AntennaPatternNewGain->Evaluate(point));
sigma /= static_cast<RealType>(m_AntennaPatternOldGain->Evaluate(point));
}
/** Apply range spread loss if needed. */
if (m_ApplyRangeSpreadLossCorrection)
{
sigma *= static_cast<RealType>(m_RangeSpreadLoss->Evaluate(point));
}
/** Lookup value has effect on for some sensors which does not required the
* above values (incidence angle, rangespreadloss etc.. */
if (m_ApplyLookupDataCorrection)
{
RealType lutVal = static_cast<RealType>(m_Lut->GetValue(index[0], index[1]));
sigma /= lutVal * lutVal;
}
/** rescaling factor has effect only with CosmoSkymed Products */
if (m_ApplyRescalingFactor)
{
sigma /= m_RescalingFactor;
}
if(sigma < 0.0)
{
sigma = 0.0;
}
return static_cast<OutputType>(sigma);
}
} // end namespace otb
#endif
|