/usr/include/OTB-6.4/otbSharkKMeansMachineLearningModel.h is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbSharkKMeansMachineLearningModel_h
#define otbSharkKMeansMachineLearningModel_h
#include "boost/shared_ptr.hpp"
#include "itkLightObject.h"
#include "otbMachineLearningModel.h"
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Woverloaded-virtual"
#pragma GCC diagnostic ignored "-Wignored-qualifiers"
#pragma GCC diagnostic ignored "-Wsign-compare"
#pragma GCC diagnostic ignored "-Wcast-align"
#pragma GCC diagnostic ignored "-Wunknown-pragmas"
#endif
#include "otb_shark.h"
#include "shark/Models/Clustering/HardClusteringModel.h"
#include "shark/Models/Clustering/SoftClusteringModel.h"
#include "shark/Models/Clustering/Centroids.h"
#include "shark/Models/Clustering/ClusteringModel.h"
#include "shark/Algorithms/KMeans.h"
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif
/** \class SharkKMeansMachineLearningModel
* \brief Shark version of Random Forests algorithm
*
* This is a specialization of MachineLearningModel class allowing to
* use Shark implementation of the Random Forests algorithm.
*
* It is noteworthy that training step is parallel.
*
* For more information, see
* http://image.diku.dk/shark/sphinx_pages/build/html/rest_sources/tutorials/algorithms/kmeans.html
*
* \ingroup OTBUnsupervised
*/
namespace otb
{
template<class TInputValue, class TTargetValue>
class ITK_EXPORT SharkKMeansMachineLearningModel : public MachineLearningModel<TInputValue, TTargetValue>
{
public:
/** Standard class typedefs. */
typedef SharkKMeansMachineLearningModel Self;
typedef MachineLearningModel<TInputValue, TTargetValue> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef typename Superclass::InputValueType InputValueType;
typedef typename Superclass::InputSampleType InputSampleType;
typedef typename Superclass::InputListSampleType InputListSampleType;
typedef typename Superclass::TargetValueType TargetValueType;
typedef typename Superclass::TargetSampleType TargetSampleType;
typedef typename Superclass::TargetListSampleType TargetListSampleType;
typedef typename Superclass::ConfidenceValueType ConfidenceValueType;
typedef typename Superclass::ConfidenceSampleType ConfidenceSampleType;
typedef typename Superclass::ConfidenceListSampleType ConfidenceListSampleType;
typedef shark::HardClusteringModel<shark::RealVector> ClusteringModelType;
typedef ClusteringModelType::OutputType ClusteringOutputType;
/** Run-time type information (and related methods). */
itkNewMacro( Self );
itkTypeMacro( SharkKMeansMachineLearningModel, MachineLearningModel );
/** Train the machine learning model */
virtual void Train() ITK_OVERRIDE;
/** Save the model to file */
virtual void Save(const std::string &filename, const std::string &name = "") ITK_OVERRIDE;
/** Load the model from file */
virtual void Load(const std::string &filename, const std::string &name = "") ITK_OVERRIDE;
/**\name Classification model file compatibility tests */
//@{
/** Is the input model file readable and compatible with the corresponding classifier ? */
virtual bool CanReadFile(const std::string &) ITK_OVERRIDE;
/** Is the input model file writable and compatible with the corresponding classifier ? */
virtual bool CanWriteFile(const std::string &) ITK_OVERRIDE;
//@}
/** Get the maximum number of iteration for the kMeans algorithm.*/
itkGetMacro( MaximumNumberOfIterations, unsigned );
/** Set the maximum number of iteration for the kMeans algorithm.*/
itkSetMacro( MaximumNumberOfIterations, unsigned );
/** Get the number of class for the kMeans algorithm.*/
itkGetMacro( K, unsigned );
/** Set the number of class for the kMeans algorithm.*/
itkSetMacro( K, unsigned );
/** If true, normalized input data sample list */
itkGetMacro( Normalized, bool );
itkSetMacro( Normalized, bool );
protected:
/** Constructor */
SharkKMeansMachineLearningModel();
/** Destructor */
virtual ~SharkKMeansMachineLearningModel();
/** Predict values using the model */
virtual TargetSampleType
DoPredict(const InputSampleType &input, ConfidenceValueType *quality = ITK_NULLPTR) const ITK_OVERRIDE;
virtual void DoPredictBatch(const InputListSampleType *, const unsigned int &startIndex, const unsigned int &size,
TargetListSampleType *, ConfidenceListSampleType * = ITK_NULLPTR) const ITK_OVERRIDE;
template<typename DataType>
DataType NormalizeData(const DataType &data) const;
/** PrintSelf method */
void PrintSelf(std::ostream &os, itk::Indent indent) const;
private:
SharkKMeansMachineLearningModel(const Self &); //purposely not implemented
void operator=(const Self &); //purposely not implemented
// Parameters set by the user
bool m_Normalized;
unsigned int m_K;
unsigned int m_MaximumNumberOfIterations;
bool m_CanRead;
/** Centroids results form kMeans */
shark::Centroids m_Centroids;
/** shark Model could be SoftClusteringModel or HardClusteringModel */
boost::shared_ptr<ClusteringModelType> m_ClusteringModel;
};
} // end namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbSharkKMeansMachineLearningModel.txx"
#endif
#endif
|