This file is indexed.

/usr/include/OTB-6.4/otbSharkKMeansMachineLearningModel.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#ifndef otbSharkKMeansMachineLearningModel_txx
#define otbSharkKMeansMachineLearningModel_txx

#include <fstream>
#include "boost/make_shared.hpp"
#include "itkMacro.h"
#include "otbSharkKMeansMachineLearningModel.h"

#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Woverloaded-virtual"
#pragma GCC diagnostic ignored "-Wignored-qualifiers"
#endif

#include "otb_shark.h"
#include "otbSharkUtils.h"
#include "shark/Algorithms/Trainers/NormalizeComponentsUnitVariance.h" //normalize
#include "shark/Algorithms/KMeans.h" //k-means algorithm
#include "shark/Models/Clustering/HardClusteringModel.h"
#include "shark/Models/Clustering/SoftClusteringModel.h"
#include "shark/Algorithms/Trainers/NormalizeComponentsUnitVariance.h"

#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif



namespace otb
{
template<class TInputValue, class TOutputValue>
SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::SharkKMeansMachineLearningModel() :
        m_Normalized( false ), m_K(2), m_MaximumNumberOfIterations( 10 )
{
  // Default set HardClusteringModel
  m_ClusteringModel = boost::make_shared<ClusteringModelType>( &m_Centroids );
}


template<class TInputValue, class TOutputValue>
SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::~SharkKMeansMachineLearningModel()
{
}

/** Train the machine learning model */
template<class TInputValue, class TOutputValue>
void
SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::Train()
{
  // Parse input data and convert to Shark Data
  std::vector<shark::RealVector> vector_data;
  otb::Shark::ListSampleToSharkVector( this->GetInputListSample(), vector_data );
  shark::Data<shark::RealVector> data = shark::createDataFromRange( vector_data );

  // Normalized input value if necessary
  if( m_Normalized )
    data = NormalizeData( data );

  // Use a Hard Clustering Model for classification
  shark::kMeans( data, m_K, m_Centroids, m_MaximumNumberOfIterations );
  m_ClusteringModel = boost::make_shared<ClusteringModelType>( &m_Centroids );
}

template<class TInputValue, class TOutputValue>
template<typename DataType>
DataType
SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::NormalizeData(const DataType &data) const
{
  shark::Normalizer<> normalizer;
  shark::NormalizeComponentsUnitVariance<> normalizingTrainer( true );//zero mean
  normalizingTrainer.train( normalizer, data );
  return normalizer( data );
}

template<class TInputValue, class TOutputValue>
typename SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::TargetSampleType
SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::DoPredict(const InputSampleType &value, ConfidenceValueType *quality) const
{
  shark::RealVector data( value.Size());
  for( size_t i = 0; i < value.Size(); i++ )
    {
    data.push_back( value[i] );
    }

  // Change quality measurement only if SoftClustering or other clustering method is used.
  if( quality != ITK_NULLPTR )
    {
    //unsigned int probas = (*m_ClusteringModel)( data );
    ( *quality ) = ConfidenceValueType( 1.);
    }

  TargetSampleType target;
  ClusteringOutputType predictedValue = (*m_ClusteringModel)( data );
  target[0] = static_cast<TOutputValue>(predictedValue);
  return target;
}

template<class TInputValue, class TOutputValue>
void
SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::DoPredictBatch(const InputListSampleType *input,
                 const unsigned int &startIndex,
                 const unsigned int &size,
                 TargetListSampleType *targets,
                 ConfidenceListSampleType *quality) const
{

  // Perform check on input values
  assert( input != ITK_NULLPTR );
  assert( targets != ITK_NULLPTR );

  // input list sample and target list sample should be initialized and without
  assert( input->Size() == targets->Size() && "Input sample list and target label list do not have the same size." );
  assert( ( ( quality == ITK_NULLPTR ) || ( quality->Size() == input->Size() ) ) &&
          "Quality samples list is not null and does not have the same size as input samples list" );
  if( startIndex + size > input->Size() )
    {
    itkExceptionMacro(
            <<"requested range ["<<startIndex<<", "<<startIndex+size<<"[ partially outside input sample list range.[0,"<<input->Size()<<"[" );
    }

  // Convert input list of features to shark data format
  std::vector<shark::RealVector> features;
  otb::Shark::ListSampleRangeToSharkVector( input, features, startIndex, size );
  shark::Data<shark::RealVector> inputSamples = shark::createDataFromRange( features );

  shark::Data<ClusteringOutputType> clusters;
  try
    {
    clusters = ( *m_ClusteringModel )( inputSamples );
    }
  catch( ... )
    {
    itkExceptionMacro( "Failed to run clustering classification. "
                               "The number of features of input samples and the model could differ.");
    }

  unsigned int id = startIndex;
  for( const auto &p : clusters.elements() )
    {
    TargetSampleType target;
    target[0] = static_cast<TOutputValue>(p);
    targets->SetMeasurementVector( id, target );
    ++id;
    }

  // Change quality measurement only if SoftClustering or other clustering method is used.
  if( quality != ITK_NULLPTR )
    {
    for( unsigned int qid = startIndex; qid < size; ++qid )
      {
      quality->SetMeasurementVector( qid, static_cast<ConfidenceValueType>(1.) );
      }
    }
}


template<class TInputValue, class TOutputValue>
void
SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::Save(const std::string &filename, const std::string & itkNotUsed( name ))
{
  std::ofstream ofs( filename.c_str());
  if( !ofs )
    {
    itkExceptionMacro( << "Error opening " << filename.c_str());
    }
  ofs << "#" << m_ClusteringModel->name() << std::endl;
  shark::TextOutArchive oa( ofs );
  m_ClusteringModel->save( oa, 1 );
}

template<class TInputValue, class TOutputValue>
void
SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::Load(const std::string &filename, const std::string & itkNotUsed( name ))
{
  m_CanRead = false;
  std::ifstream ifs( filename.c_str());
  if(ifs.good())
    {
    // Check if first line contains model name
    std::string line;
    std::getline(ifs, line);
    m_CanRead = line.find(m_ClusteringModel->name()) != std::string::npos;
    }

  if(!m_CanRead)
    return;

  shark::TextInArchive ia( ifs );
  m_ClusteringModel->load( ia, 0 );
  ifs.close();
}

template<class TInputValue, class TOutputValue>
bool
SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::CanReadFile(const std::string &file)
{
  try
    {
    m_CanRead = true;
    this->Load( file );
    }
  catch( ... )
    {
    return false;
    }
  return m_CanRead;
}

template<class TInputValue, class TOutputValue>
bool
SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::CanWriteFile(const std::string & itkNotUsed( file ))
{
  return true;
}

template<class TInputValue, class TOutputValue>
void
SharkKMeansMachineLearningModel<TInputValue, TOutputValue>
::PrintSelf(std::ostream &os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf( os, indent );
}
} //end namespace otb

#endif