This file is indexed.

/usr/include/OTB-6.4/otbTrainDecisionTree.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbTrainDecisionTree_txx
#define otbTrainDecisionTree_txx
#include "otbLearningApplicationBase.h"
#include "otbDecisionTreeMachineLearningModel.h"

namespace otb
{
namespace Wrapper
{

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitDecisionTreeParams()
{
  AddChoice("classifier.dt", "Decision Tree classifier");
  SetParameterDescription("classifier.dt",
    "This group of parameters allows setting Decision Tree classifier parameters. "
    "See complete documentation here \\url{http://docs.opencv.org/modules/ml/doc/decision_trees.html}.");
  //MaxDepth
  AddParameter(ParameterType_Int, "classifier.dt.max", "Maximum depth of the tree");
#ifdef OTB_OPENCV_3
  SetParameterInt("classifier.dt.max",10, false);
#else
  SetParameterInt("classifier.dt.max",65535, false);
#endif
  SetParameterDescription("classifier.dt.max",
   "The training algorithm attempts to split each node while its depth is smaller "
   "than the maximum possible depth of the tree. The actual depth may be smaller "
   "if the other termination criteria are met, and/or if the tree is pruned.");

  //MinSampleCount
  AddParameter(ParameterType_Int, "classifier.dt.min", "Minimum number of samples in each node");
  SetParameterInt("classifier.dt.min",10, false);
  SetParameterDescription("classifier.dt.min",
    "If the number of samples in a node is smaller "
    "than this parameter, then this node will not be split.");

  //RegressionAccuracy
  AddParameter(ParameterType_Float, "classifier.dt.ra", "Termination criteria for regression tree");
  SetParameterFloat("classifier.dt.ra",0.01, false);
  SetParameterDescription("classifier.dt.ra",
    "If all absolute differences between an estimated value in a node "
    "and the values of the train samples in this node are smaller than this "
    "regression accuracy parameter, then the node will not be split further.");

  //UseSurrogates : don't need to be exposed !
  //AddParameter(ParameterType_Empty, "classifier.dt.sur", "Surrogate splits will be built");
  //SetParameterDescription("classifier.dt.sur","These splits allow working with missing data and compute variable importance correctly.");

  //MaxCategories
  AddParameter(ParameterType_Int, "classifier.dt.cat",
    "Cluster possible values of a categorical variable into K <= cat clusters to find a "
    "suboptimal split");
  SetParameterInt("classifier.dt.cat",10, false);
  SetParameterDescription("classifier.dt.cat",
      "Cluster possible values of a categorical variable into K <= cat clusters to find a "
      "suboptimal split.");

  //CVFolds
  AddParameter(ParameterType_Int, "classifier.dt.f", "K-fold cross-validations");
#ifdef OTB_OPENCV_3
  // disable cross validation by default (crash in opencv 3.2)
  SetParameterInt("classifier.dt.f",0, false);
#else
  SetParameterInt("classifier.dt.f",10, false);
#endif
  SetParameterDescription("classifier.dt.f",
    "If cv_folds > 1, then it prunes a tree with K-fold cross-validation where K "
    "is equal to cv_folds.");

  //Use1seRule
  AddParameter(ParameterType_Empty, "classifier.dt.r", "Set Use1seRule flag to false");
  SetParameterDescription("classifier.dt.r",
      "If true, then a pruning will be harsher. This will make a tree more compact and more "
      "resistant to the training data noise but a bit less accurate.");

  //TruncatePrunedTree
  AddParameter(ParameterType_Empty, "classifier.dt.t", "Set TruncatePrunedTree flag to false");
  SetParameterDescription("classifier.dt.t",
    "If true, then pruned branches are physically removed from the tree.");

  //Priors are not exposed.

}

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::TrainDecisionTree(typename ListSampleType::Pointer trainingListSample,
                    typename TargetListSampleType::Pointer trainingLabeledListSample,
                    std::string modelPath)
{
  typedef otb::DecisionTreeMachineLearningModel<InputValueType, OutputValueType> DecisionTreeType;
  typename DecisionTreeType::Pointer classifier = DecisionTreeType::New();
  classifier->SetRegressionMode(this->m_RegressionFlag);
  classifier->SetInputListSample(trainingListSample);
  classifier->SetTargetListSample(trainingLabeledListSample);
  classifier->SetMaxDepth(GetParameterInt("classifier.dt.max"));
  classifier->SetMinSampleCount(GetParameterInt("classifier.dt.min"));
  classifier->SetRegressionAccuracy(GetParameterFloat("classifier.dt.ra"));
  classifier->SetMaxCategories(GetParameterInt("classifier.dt.cat"));
  classifier->SetCVFolds(GetParameterInt("classifier.dt.f"));
  if (IsParameterEnabled("classifier.dt.r"))
    {
    classifier->SetUse1seRule(false);
    }
  if (IsParameterEnabled("classifier.dt.t"))
    {
    classifier->SetTruncatePrunedTree(false);
    }
  classifier->Train();
  classifier->Save(modelPath);
}

} //end namespace wrapper
} //end namespace otb

#endif