/usr/include/OTB-6.4/otbTrainGradientBoostedTree.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbTrainGradientBoostedTree_txx
#define otbTrainGradientBoostedTree_txx
#include "otbLearningApplicationBase.h"
#include "otbGradientBoostedTreeMachineLearningModel.h"
namespace otb
{
namespace Wrapper
{
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitGradientBoostedTreeParams()
{
// disable GBTree model with OpenCV 3 (not implemented)
#ifndef OTB_OPENCV_3
AddChoice("classifier.gbt", "Gradient Boosted Tree classifier");
SetParameterDescription(
"classifier.gbt",
"This group of parameters allows setting Gradient Boosted Tree classifier parameters. "
"See complete documentation here \\url{http://docs.opencv.org/modules/ml/doc/gradient_boosted_trees.html}.");
if (m_RegressionFlag)
{
AddParameter(ParameterType_Choice, "classifier.gbt.t", "Loss Function Type");
SetParameterDescription("classifier.gbt.t","Type of loss functionused for training.");
AddChoice("classifier.gbt.t.sqr","Squared Loss");
AddChoice("classifier.gbt.t.abs","Absolute Loss");
AddChoice("classifier.gbt.t.hub","Huber Loss");
}
//WeakCount
AddParameter(ParameterType_Int, "classifier.gbt.w", "Number of boosting algorithm iterations");
SetParameterInt("classifier.gbt.w",200, false);
SetParameterDescription(
"classifier.gbt.w",
"Number \"w\" of boosting algorithm iterations, with w*K being the total number of trees in "
"the GBT model, where K is the output number of classes.");
//Shrinkage
AddParameter(ParameterType_Float, "classifier.gbt.s", "Regularization parameter");
SetParameterFloat("classifier.gbt.s",0.01, false);
SetParameterDescription("classifier.gbt.s", "Regularization parameter.");
//SubSamplePortion
AddParameter(ParameterType_Float, "classifier.gbt.p",
"Portion of the whole training set used for each algorithm iteration");
SetParameterFloat("classifier.gbt.p",0.8, false);
SetParameterDescription(
"classifier.gbt.p",
"Portion of the whole training set used for each algorithm iteration. The subset is generated randomly.");
//MaxDepth
AddParameter(ParameterType_Int, "classifier.gbt.max", "Maximum depth of the tree");
SetParameterInt("classifier.gbt.max",3, false);
SetParameterDescription(
"classifier.gbt.max", "The training algorithm attempts to split each node while its depth is smaller than the maximum "
"possible depth of the tree. The actual depth may be smaller if the other termination criteria are met, and/or "
"if the tree is pruned.");
//UseSurrogates : don't need to be exposed !
//AddParameter(ParameterType_Empty, "classifier.gbt.sur", "Surrogate splits will be built");
//SetParameterDescription("classifier.gbt.sur","These splits allow working with missing data and compute variable importance correctly.");
#endif
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::TrainGradientBoostedTree(typename ListSampleType::Pointer trainingListSample,
typename TargetListSampleType::Pointer trainingLabeledListSample,
std::string modelPath)
{
#ifdef OTB_OPENCV_3
(void) trainingListSample;
(void) trainingLabeledListSample;
(void) modelPath;
#else
typedef otb::GradientBoostedTreeMachineLearningModel<InputValueType, OutputValueType> GradientBoostedTreeType;
typename GradientBoostedTreeType::Pointer classifier = GradientBoostedTreeType::New();
classifier->SetRegressionMode(this->m_RegressionFlag);
classifier->SetInputListSample(trainingListSample);
classifier->SetTargetListSample(trainingLabeledListSample);
classifier->SetWeakCount(GetParameterInt("classifier.gbt.w"));
classifier->SetShrinkage(GetParameterFloat("classifier.gbt.s"));
classifier->SetSubSamplePortion(GetParameterFloat("classifier.gbt.p"));
classifier->SetMaxDepth(GetParameterInt("classifier.gbt.max"));
if (m_RegressionFlag)
{
switch (GetParameterInt("classifier.gbt.t"))
{
case 0: // SQUARED_LOSS
classifier->SetLossFunctionType(CvGBTrees::SQUARED_LOSS);
break;
case 1: // ABSOLUTE_LOSS
classifier->SetLossFunctionType(CvGBTrees::ABSOLUTE_LOSS);
break;
case 2: // HUBER_LOSS
classifier->SetLossFunctionType(CvGBTrees::HUBER_LOSS);
break;
default:
classifier->SetLossFunctionType(CvGBTrees::SQUARED_LOSS);
break;
}
}
else
{
classifier->SetLossFunctionType(CvGBTrees::DEVIANCE_LOSS);
}
classifier->Train();
classifier->Save(modelPath);
#endif
}
} //end namespace wrapper
} //end namespace otb
#endif
|