This file is indexed.

/usr/include/OTB-6.4/otbTrainImagesBase.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbTrainImagesBase_txx
#define otbTrainImagesBase_txx

#include "otbTrainImagesBase.h"

namespace otb
{
namespace Wrapper
{
void TrainImagesBase::InitIO()
{
  //Group IO
  AddParameter( ParameterType_Group, "io", "Input and output data" );
  SetParameterDescription( "io", "This group of parameters allows setting input and output data." );

  AddParameter( ParameterType_InputImageList, "io.il", "Input Image List" );
  SetParameterDescription( "io.il", "A list of input images." );
  AddParameter( ParameterType_InputVectorDataList, "io.vd", "Input Vector Data List" );
  SetParameterDescription( "io.vd", "A list of vector data to select the training samples." );
  MandatoryOn( "io.vd" );

  AddParameter( ParameterType_Empty, "cleanup", "Temporary files cleaning" );
  EnableParameter( "cleanup" );
  SetParameterDescription( "cleanup",
                           "If activated, the application will try to clean all temporary files it created" );
  MandatoryOff( "cleanup" );
}

void TrainImagesBase::InitSampling()
{
  AddApplication( "PolygonClassStatistics", "polystat", "Polygon analysis" );
  AddApplication( "MultiImageSamplingRate", "rates", "Sampling rates" );
  AddApplication( "SampleSelection", "select", "Sample selection" );
  AddApplication( "SampleExtraction", "extraction", "Sample extraction" );

  // Sampling settings
  AddParameter( ParameterType_Group, "sample", "Training and validation samples parameters" );
  SetParameterDescription( "sample",
                           "This group of parameters allows you to set training and validation sample lists parameters." );
  AddParameter( ParameterType_Int, "sample.mt", "Maximum training sample size per class" );
  SetDefaultParameterInt( "sample.mt", 1000 );
  SetParameterDescription( "sample.mt", "Maximum size per class (in pixels) of "
          "the training sample list (default = 1000) (no limit = -1). If equal to -1,"
          " then the maximal size of the available training sample list per class "
          "will be equal to the surface area of the smallest class multiplied by the"
          " training sample ratio." );
  AddParameter( ParameterType_Int, "sample.mv", "Maximum validation sample size per class" );
  SetDefaultParameterInt( "sample.mv", 1000 );
  SetParameterDescription( "sample.mv", "Maximum size per class (in pixels) of "
          "the validation sample list (default = 1000) (no limit = -1). If equal to -1,"
          " then the maximal size of the available validation sample list per class "
          "will be equal to the surface area of the smallest class multiplied by the "
          "validation sample ratio." );
  AddParameter( ParameterType_Int, "sample.bm", "Bound sample number by minimum" );
  SetDefaultParameterInt( "sample.bm", 1 );
  SetParameterDescription( "sample.bm", "Bound the number of samples for each "
          "class by the number of available samples by the smaller class. Proportions "
          "between training and validation are respected. Default is true (=1)." );
  AddParameter( ParameterType_Float, "sample.vtr", "Training and validation sample ratio" );
  SetParameterDescription( "sample.vtr", "Ratio between training and validation samples (0.0 = all training, 1.0 = "
          "all validation) (default = 0.5)." );
  SetParameterFloat( "sample.vtr", 0.5, false );
  SetMaximumParameterFloatValue( "sample.vtr", 1.0 );
  SetMinimumParameterFloatValue( "sample.vtr", 0.0 );

//  AddParameter( ParameterType_Float, "sample.percent", "Percentage of sample extract from images" );
//  SetParameterDescription( "sample.percent", "Percentage of sample extract from images for "
//          "training and validation when only images are provided." );
//  SetDefaultParameterFloat( "sample.percent", 1.0 );
//  SetMinimumParameterFloatValue( "sample.percent", 0.0 );
//  SetMaximumParameterFloatValue( "sample.percent", 1.0 );

  ShareSamplingParameters();
  ConnectSamplingParameters();
}

void TrainImagesBase::ShareSamplingParameters()
{
  // hide sampling parameters
  //ShareParameter("sample.strategy","rates.strategy");
  //ShareParameter("sample.mim","rates.mim");
  ShareParameter( "ram", "polystat.ram" );
  ShareParameter( "elev", "polystat.elev" );
  ShareParameter( "sample.vfn", "polystat.field",
    "Field containing the class integer label for supervision" ,
    "Field containing the class id for supervision. "
      "The values in this field shall be cast into integers.");
}

void TrainImagesBase::ConnectSamplingParameters()
{
  Connect( "extraction.field", "polystat.field" );
  Connect( "extraction.layer", "polystat.layer" );

  Connect( "select.ram", "polystat.ram" );
  Connect( "extraction.ram", "polystat.ram" );

  Connect( "select.field", "polystat.field" );
  Connect( "select.layer", "polystat.layer" );
  Connect( "select.elev", "polystat.elev" );

  Connect( "extraction.in", "select.in" );
  Connect( "extraction.vec", "select.out" );
}

void TrainImagesBase::InitClassification()
{
  AddApplication( "TrainVectorClassifier", "training", "Model training" );

  AddParameter( ParameterType_InputVectorDataList, "io.valid", "Validation Vector Data List" );
  SetParameterDescription( "io.valid", "A list of vector data to select the validation samples." );
  MandatoryOff( "io.valid" );

  ShareClassificationParams();
  ConnectClassificationParams();
};

void TrainImagesBase::ShareClassificationParams()
{
  ShareParameter( "io.imstat", "training.io.stats" );
  ShareParameter( "io.out", "training.io.out" );

  ShareParameter( "classifier", "training.classifier" );
  ShareParameter( "rand", "training.rand" );

  ShareParameter( "io.confmatout", "training.io.confmatout" );
}

void TrainImagesBase::ConnectClassificationParams()
{
  Connect( "training.cfield", "polystat.field" );
  Connect( "select.rand", "training.rand" );
}

void TrainImagesBase::ComputePolygonStatistics(FloatVectorImageListType *imageList,
                                               const std::vector<std::string> &vectorFileNames,
                                               const std::vector<std::string> &statisticsFileNames)
{
  unsigned int nbImages = static_cast<unsigned int>(imageList->Size());
  for( unsigned int i = 0; i < nbImages; i++ )
    {
    GetInternalApplication( "polystat" )->SetParameterInputImage( "in", imageList->GetNthElement( i ) );
    GetInternalApplication( "polystat" )->SetParameterString( "vec", vectorFileNames[i], false );
    GetInternalApplication( "polystat" )->SetParameterString( "out", statisticsFileNames[i], false );
    ExecuteInternal( "polystat" );
    }
}


TrainImagesBase::SamplingRates TrainImagesBase::ComputeFinalMaximumSamplingRates(bool dedicatedValidation)
{
  SamplingRates rates;
  GetInternalApplication( "rates" )->SetParameterString( "mim", "proportional", false );
  double vtr = GetParameterFloat( "sample.vtr" );
  long mt = GetParameterInt( "sample.mt" );
  long mv = GetParameterInt( "sample.mv" );
  // compute final maximum training and final maximum validation
  // By default take all samples (-1 means all samples)
  rates.fmt = -1;
  rates.fmv = -1;
  if( GetParameterInt( "sample.bm" ) == 0 )
    {
    if( dedicatedValidation )
      {
      // fmt and fmv will be used separately
      rates.fmt = mt;
      rates.fmv = mv;
      if( mt > -1 && mv <= -1 && vtr < 0.99999 )
        {
        rates.fmv = static_cast<long>(( double ) mt * vtr / ( 1.0 - vtr ));
        }
      if( mt <= -1 && mv > -1 && vtr > 0.00001 )
        {
        rates.fmt = static_cast<long>(( double ) mv * ( 1.0 - vtr ) / vtr);
        }
      }
    else
      {
      // only fmt will be used for both training and validation samples
      // So we try to compute the total number of samples given input
      // parameters mt, mv and vtr.
      if( mt > -1 && vtr < 0.99999 )
        {
        rates.fmt = static_cast<long>(( double ) mt / ( 1.0 - vtr ));
        }
      if( mv > -1 && vtr > 0.00001 )
        {
        if( rates.fmt > -1 )
          {
          rates.fmt = std::min( rates.fmt, static_cast<long>(( double ) mv / vtr) );
          }
        else
          {
          rates.fmt = static_cast<long>(( double ) mv / vtr);
          }
        }
      }
    }
  return rates;
}


void TrainImagesBase::ComputeSamplingRate(const std::vector<std::string> &statisticsFileNames,
                                          const std::string &ratesFileName, long maximum)
{
  // Sampling rates
  GetInternalApplication( "rates" )->SetParameterStringList( "il", statisticsFileNames, false );
  GetInternalApplication( "rates" )->SetParameterString( "out", ratesFileName, false );
  if( GetParameterInt( "sample.bm" ) != 0 )
    {
    GetInternalApplication( "rates" )->SetParameterString( "strategy", "smallest", false );
    }
  else
    {
    if( maximum > -1 )
      {
      std::ostringstream oss;
      oss << maximum;
      GetInternalApplication( "rates" )->SetParameterString( "strategy", "constant", false );
      GetInternalApplication( "rates" )->SetParameterString( "strategy.constant.nb", oss.str(), false );
      }
    else
      {
      GetInternalApplication( "rates" )->SetParameterString( "strategy", "all", false );
      }
    }
  ExecuteInternal( "rates" );
}

void
TrainImagesBase::TrainModel(FloatVectorImageListType *imageList, const std::vector<std::string> &sampleTrainFileNames,
                            const std::vector<std::string> &sampleValidationFileNames)
{
  GetInternalApplication( "training" )->SetParameterStringList( "io.vd", sampleTrainFileNames, false );
  if( !sampleValidationFileNames.empty() )
    GetInternalApplication( "training" )->SetParameterStringList( "valid.vd", sampleValidationFileNames, false );

  UpdateInternalParameters( "training" );
  // set field names
  FloatVectorImageType::Pointer image = imageList->GetNthElement( 0 );
  unsigned int nbBands = image->GetNumberOfComponentsPerPixel();
  std::vector<std::string> selectedNames;
  for( unsigned int i = 0; i < nbBands; i++ )
    {
    std::ostringstream oss;
    oss << i;
    selectedNames.push_back( "value_" + oss.str() );
    }
  GetInternalApplication( "training" )->SetParameterStringList( "feat", selectedNames, false );
  ExecuteInternal( "training" );
}

void TrainImagesBase::SelectAndExtractSamples(FloatVectorImageType *image, std::string vectorFileName,
                                              std::string sampleFileName, std::string statisticsFileName,
                                              std::string ratesFileName, SamplingStrategy strategy,
                                              std::string selectedField)
{
  GetInternalApplication( "select" )->SetParameterInputImage( "in", image );
  GetInternalApplication( "select" )->SetParameterString( "out", sampleFileName, false );

  // Change the selection strategy based on selected sampling strategy
  switch( strategy )
    {
//    case GEOMETRIC:
//      GetInternalApplication( "select" )->SetParameterString( "sampler", "random", false );
//      GetInternalApplication( "select" )->SetParameterString( "strategy", "percent", false );
//      GetInternalApplication( "select" )->SetParameterFloat( "strategy.percent.p",
//                                                             GetParameterFloat( "sample.percent" ), false );
//      break;
    case CLASS:
    default:
      GetInternalApplication( "select" )->SetParameterString( "vec", vectorFileName, false );
      GetInternalApplication( "select" )->SetParameterString( "instats", statisticsFileName, false );
      GetInternalApplication( "select" )->SetParameterString( "sampler", "periodic", false );
      GetInternalApplication( "select" )->SetParameterInt( "sampler.periodic.jitter", 50 );
      GetInternalApplication( "select" )->SetParameterString( "strategy", "byclass", false );
      GetInternalApplication( "select" )->SetParameterString( "strategy.byclass.in", ratesFileName, false );
      break;
    }

  // select sample positions
  ExecuteInternal( "select" );

  GetInternalApplication( "extraction" )->SetParameterString( "vec", sampleFileName, false );
  UpdateInternalParameters( "extraction" );
  if( !selectedField.empty() )
    GetInternalApplication( "extraction" )->SetParameterString( "field", selectedField, false );

  GetInternalApplication( "extraction" )->SetParameterString( "outfield", "prefix", false );
  GetInternalApplication( "extraction" )->SetParameterString( "outfield.prefix.name", "value_", false );

  // extract sample descriptors
  ExecuteInternal( "extraction" );
}


void TrainImagesBase::SelectAndExtractTrainSamples(const TrainFileNamesHandler &fileNames,
                                                   FloatVectorImageListType *imageList,
                                                   std::vector<std::string> vectorFileNames, SamplingStrategy strategy,
                                                   std::string selectedFieldName)
{

  for( unsigned int i = 0; i < imageList->Size(); ++i )
    {
    std::string vectorFileName = vectorFileNames.empty() ? "" : vectorFileNames[i];
    SelectAndExtractSamples( imageList->GetNthElement( i ), vectorFileName, fileNames.sampleOutputs[i],
                             fileNames.polyStatTrainOutputs[i], fileNames.ratesTrainOutputs[i], strategy,
                             selectedFieldName );
    }
}


void TrainImagesBase::SelectAndExtractValidationSamples(const TrainFileNamesHandler &fileNames,
                                                        FloatVectorImageListType *imageList,
                                                        const std::vector<std::string> &validationVectorFileList)
{
  for( unsigned int i = 0; i < imageList->Size(); ++i )
    {
    SelectAndExtractSamples( imageList->GetNthElement( i ), validationVectorFileList[i],
                             fileNames.sampleValidOutputs[i], fileNames.polyStatValidOutputs[i],
                             fileNames.ratesValidOutputs[i], Self::CLASS );
    }
}

void TrainImagesBase::SplitTrainingToValidationSamples(const TrainFileNamesHandler &fileNames,
                                                       FloatVectorImageListType *imageList)
{
  for( unsigned int i = 0; i < imageList->Size(); ++i )
    {
    SplitTrainingAndValidationSamples( imageList->GetNthElement( i ), fileNames.sampleOutputs[i],
                                       fileNames.sampleTrainOutputs[i], fileNames.sampleValidOutputs[i],
                                       fileNames.ratesTrainOutputs[i] );
    }
}

void TrainImagesBase::SplitTrainingAndValidationSamples(FloatVectorImageType *image, std::string sampleFileName,
                                                        std::string sampleTrainFileName,
                                                        std::string sampleValidFileName,
                                                        std::string ratesTrainFileName)

{
  // Split between training and validation
  ogr::DataSource::Pointer source = ogr::DataSource::New( sampleFileName, ogr::DataSource::Modes::Read );
  ogr::DataSource::Pointer destTrain = ogr::DataSource::New( sampleTrainFileName, ogr::DataSource::Modes::Overwrite );
  ogr::DataSource::Pointer destValid = ogr::DataSource::New( sampleValidFileName, ogr::DataSource::Modes::Overwrite );
  // read sampling rates from ratesTrainOutputs
  SamplingRateCalculator::Pointer rateCalculator = SamplingRateCalculator::New();
  rateCalculator->Read( ratesTrainFileName );
  // Compute sampling rates for train and valid
  const MapRateType &inputRates = rateCalculator->GetRatesByClass();
  MapRateType trainRates;
  MapRateType validRates;
  otb::SamplingRateCalculator::TripletType tpt;
  for( MapRateType::const_iterator it = inputRates.begin(); it != inputRates.end(); ++it )
    {
    double vtr = GetParameterFloat( "sample.vtr" );
    unsigned long total = std::min( it->second.Required, it->second.Tot );
    unsigned long neededValid = static_cast<unsigned long>(( double ) total * vtr );
    unsigned long neededTrain = total - neededValid;
    tpt.Tot = total;
    tpt.Required = neededTrain;
    tpt.Rate = ( 1.0 - vtr );
    trainRates[it->first] = tpt;
    tpt.Tot = neededValid;
    tpt.Required = neededValid;
    tpt.Rate = 1.0;
    validRates[it->first] = tpt;
    }

  // Use an otb::OGRDataToSamplePositionFilter with 2 outputs
  PeriodicSamplerType::SamplerParameterType param;
  param.Offset = 0;
  param.MaxJitter = 0;
  PeriodicSamplerType::Pointer splitter = PeriodicSamplerType::New();
  splitter->SetInput( image );
  splitter->SetOGRData( source );
  splitter->SetOutputPositionContainerAndRates( destTrain, trainRates, 0 );
  splitter->SetOutputPositionContainerAndRates( destValid, validRates, 1 );
  splitter->SetFieldName( this->GetParameterStringList( "sample.vfn" )[0] );
  splitter->SetLayerIndex( 0 );
  splitter->SetOriginFieldName( std::string( "" ) );
  splitter->SetSamplerParameters( param );
  splitter->GetStreamer()->SetAutomaticTiledStreaming( static_cast<unsigned int>(this->GetParameterInt( "ram" )) );
  AddProcess( splitter->GetStreamer(), "Split samples between training and validation..." );
  splitter->Update();
}
}
}

#endif