/usr/include/OTB-6.4/otbTrainImagesBase.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbTrainImagesBase_txx
#define otbTrainImagesBase_txx
#include "otbTrainImagesBase.h"
namespace otb
{
namespace Wrapper
{
void TrainImagesBase::InitIO()
{
//Group IO
AddParameter( ParameterType_Group, "io", "Input and output data" );
SetParameterDescription( "io", "This group of parameters allows setting input and output data." );
AddParameter( ParameterType_InputImageList, "io.il", "Input Image List" );
SetParameterDescription( "io.il", "A list of input images." );
AddParameter( ParameterType_InputVectorDataList, "io.vd", "Input Vector Data List" );
SetParameterDescription( "io.vd", "A list of vector data to select the training samples." );
MandatoryOn( "io.vd" );
AddParameter( ParameterType_Empty, "cleanup", "Temporary files cleaning" );
EnableParameter( "cleanup" );
SetParameterDescription( "cleanup",
"If activated, the application will try to clean all temporary files it created" );
MandatoryOff( "cleanup" );
}
void TrainImagesBase::InitSampling()
{
AddApplication( "PolygonClassStatistics", "polystat", "Polygon analysis" );
AddApplication( "MultiImageSamplingRate", "rates", "Sampling rates" );
AddApplication( "SampleSelection", "select", "Sample selection" );
AddApplication( "SampleExtraction", "extraction", "Sample extraction" );
// Sampling settings
AddParameter( ParameterType_Group, "sample", "Training and validation samples parameters" );
SetParameterDescription( "sample",
"This group of parameters allows you to set training and validation sample lists parameters." );
AddParameter( ParameterType_Int, "sample.mt", "Maximum training sample size per class" );
SetDefaultParameterInt( "sample.mt", 1000 );
SetParameterDescription( "sample.mt", "Maximum size per class (in pixels) of "
"the training sample list (default = 1000) (no limit = -1). If equal to -1,"
" then the maximal size of the available training sample list per class "
"will be equal to the surface area of the smallest class multiplied by the"
" training sample ratio." );
AddParameter( ParameterType_Int, "sample.mv", "Maximum validation sample size per class" );
SetDefaultParameterInt( "sample.mv", 1000 );
SetParameterDescription( "sample.mv", "Maximum size per class (in pixels) of "
"the validation sample list (default = 1000) (no limit = -1). If equal to -1,"
" then the maximal size of the available validation sample list per class "
"will be equal to the surface area of the smallest class multiplied by the "
"validation sample ratio." );
AddParameter( ParameterType_Int, "sample.bm", "Bound sample number by minimum" );
SetDefaultParameterInt( "sample.bm", 1 );
SetParameterDescription( "sample.bm", "Bound the number of samples for each "
"class by the number of available samples by the smaller class. Proportions "
"between training and validation are respected. Default is true (=1)." );
AddParameter( ParameterType_Float, "sample.vtr", "Training and validation sample ratio" );
SetParameterDescription( "sample.vtr", "Ratio between training and validation samples (0.0 = all training, 1.0 = "
"all validation) (default = 0.5)." );
SetParameterFloat( "sample.vtr", 0.5, false );
SetMaximumParameterFloatValue( "sample.vtr", 1.0 );
SetMinimumParameterFloatValue( "sample.vtr", 0.0 );
// AddParameter( ParameterType_Float, "sample.percent", "Percentage of sample extract from images" );
// SetParameterDescription( "sample.percent", "Percentage of sample extract from images for "
// "training and validation when only images are provided." );
// SetDefaultParameterFloat( "sample.percent", 1.0 );
// SetMinimumParameterFloatValue( "sample.percent", 0.0 );
// SetMaximumParameterFloatValue( "sample.percent", 1.0 );
ShareSamplingParameters();
ConnectSamplingParameters();
}
void TrainImagesBase::ShareSamplingParameters()
{
// hide sampling parameters
//ShareParameter("sample.strategy","rates.strategy");
//ShareParameter("sample.mim","rates.mim");
ShareParameter( "ram", "polystat.ram" );
ShareParameter( "elev", "polystat.elev" );
ShareParameter( "sample.vfn", "polystat.field",
"Field containing the class integer label for supervision" ,
"Field containing the class id for supervision. "
"The values in this field shall be cast into integers.");
}
void TrainImagesBase::ConnectSamplingParameters()
{
Connect( "extraction.field", "polystat.field" );
Connect( "extraction.layer", "polystat.layer" );
Connect( "select.ram", "polystat.ram" );
Connect( "extraction.ram", "polystat.ram" );
Connect( "select.field", "polystat.field" );
Connect( "select.layer", "polystat.layer" );
Connect( "select.elev", "polystat.elev" );
Connect( "extraction.in", "select.in" );
Connect( "extraction.vec", "select.out" );
}
void TrainImagesBase::InitClassification()
{
AddApplication( "TrainVectorClassifier", "training", "Model training" );
AddParameter( ParameterType_InputVectorDataList, "io.valid", "Validation Vector Data List" );
SetParameterDescription( "io.valid", "A list of vector data to select the validation samples." );
MandatoryOff( "io.valid" );
ShareClassificationParams();
ConnectClassificationParams();
};
void TrainImagesBase::ShareClassificationParams()
{
ShareParameter( "io.imstat", "training.io.stats" );
ShareParameter( "io.out", "training.io.out" );
ShareParameter( "classifier", "training.classifier" );
ShareParameter( "rand", "training.rand" );
ShareParameter( "io.confmatout", "training.io.confmatout" );
}
void TrainImagesBase::ConnectClassificationParams()
{
Connect( "training.cfield", "polystat.field" );
Connect( "select.rand", "training.rand" );
}
void TrainImagesBase::ComputePolygonStatistics(FloatVectorImageListType *imageList,
const std::vector<std::string> &vectorFileNames,
const std::vector<std::string> &statisticsFileNames)
{
unsigned int nbImages = static_cast<unsigned int>(imageList->Size());
for( unsigned int i = 0; i < nbImages; i++ )
{
GetInternalApplication( "polystat" )->SetParameterInputImage( "in", imageList->GetNthElement( i ) );
GetInternalApplication( "polystat" )->SetParameterString( "vec", vectorFileNames[i], false );
GetInternalApplication( "polystat" )->SetParameterString( "out", statisticsFileNames[i], false );
ExecuteInternal( "polystat" );
}
}
TrainImagesBase::SamplingRates TrainImagesBase::ComputeFinalMaximumSamplingRates(bool dedicatedValidation)
{
SamplingRates rates;
GetInternalApplication( "rates" )->SetParameterString( "mim", "proportional", false );
double vtr = GetParameterFloat( "sample.vtr" );
long mt = GetParameterInt( "sample.mt" );
long mv = GetParameterInt( "sample.mv" );
// compute final maximum training and final maximum validation
// By default take all samples (-1 means all samples)
rates.fmt = -1;
rates.fmv = -1;
if( GetParameterInt( "sample.bm" ) == 0 )
{
if( dedicatedValidation )
{
// fmt and fmv will be used separately
rates.fmt = mt;
rates.fmv = mv;
if( mt > -1 && mv <= -1 && vtr < 0.99999 )
{
rates.fmv = static_cast<long>(( double ) mt * vtr / ( 1.0 - vtr ));
}
if( mt <= -1 && mv > -1 && vtr > 0.00001 )
{
rates.fmt = static_cast<long>(( double ) mv * ( 1.0 - vtr ) / vtr);
}
}
else
{
// only fmt will be used for both training and validation samples
// So we try to compute the total number of samples given input
// parameters mt, mv and vtr.
if( mt > -1 && vtr < 0.99999 )
{
rates.fmt = static_cast<long>(( double ) mt / ( 1.0 - vtr ));
}
if( mv > -1 && vtr > 0.00001 )
{
if( rates.fmt > -1 )
{
rates.fmt = std::min( rates.fmt, static_cast<long>(( double ) mv / vtr) );
}
else
{
rates.fmt = static_cast<long>(( double ) mv / vtr);
}
}
}
}
return rates;
}
void TrainImagesBase::ComputeSamplingRate(const std::vector<std::string> &statisticsFileNames,
const std::string &ratesFileName, long maximum)
{
// Sampling rates
GetInternalApplication( "rates" )->SetParameterStringList( "il", statisticsFileNames, false );
GetInternalApplication( "rates" )->SetParameterString( "out", ratesFileName, false );
if( GetParameterInt( "sample.bm" ) != 0 )
{
GetInternalApplication( "rates" )->SetParameterString( "strategy", "smallest", false );
}
else
{
if( maximum > -1 )
{
std::ostringstream oss;
oss << maximum;
GetInternalApplication( "rates" )->SetParameterString( "strategy", "constant", false );
GetInternalApplication( "rates" )->SetParameterString( "strategy.constant.nb", oss.str(), false );
}
else
{
GetInternalApplication( "rates" )->SetParameterString( "strategy", "all", false );
}
}
ExecuteInternal( "rates" );
}
void
TrainImagesBase::TrainModel(FloatVectorImageListType *imageList, const std::vector<std::string> &sampleTrainFileNames,
const std::vector<std::string> &sampleValidationFileNames)
{
GetInternalApplication( "training" )->SetParameterStringList( "io.vd", sampleTrainFileNames, false );
if( !sampleValidationFileNames.empty() )
GetInternalApplication( "training" )->SetParameterStringList( "valid.vd", sampleValidationFileNames, false );
UpdateInternalParameters( "training" );
// set field names
FloatVectorImageType::Pointer image = imageList->GetNthElement( 0 );
unsigned int nbBands = image->GetNumberOfComponentsPerPixel();
std::vector<std::string> selectedNames;
for( unsigned int i = 0; i < nbBands; i++ )
{
std::ostringstream oss;
oss << i;
selectedNames.push_back( "value_" + oss.str() );
}
GetInternalApplication( "training" )->SetParameterStringList( "feat", selectedNames, false );
ExecuteInternal( "training" );
}
void TrainImagesBase::SelectAndExtractSamples(FloatVectorImageType *image, std::string vectorFileName,
std::string sampleFileName, std::string statisticsFileName,
std::string ratesFileName, SamplingStrategy strategy,
std::string selectedField)
{
GetInternalApplication( "select" )->SetParameterInputImage( "in", image );
GetInternalApplication( "select" )->SetParameterString( "out", sampleFileName, false );
// Change the selection strategy based on selected sampling strategy
switch( strategy )
{
// case GEOMETRIC:
// GetInternalApplication( "select" )->SetParameterString( "sampler", "random", false );
// GetInternalApplication( "select" )->SetParameterString( "strategy", "percent", false );
// GetInternalApplication( "select" )->SetParameterFloat( "strategy.percent.p",
// GetParameterFloat( "sample.percent" ), false );
// break;
case CLASS:
default:
GetInternalApplication( "select" )->SetParameterString( "vec", vectorFileName, false );
GetInternalApplication( "select" )->SetParameterString( "instats", statisticsFileName, false );
GetInternalApplication( "select" )->SetParameterString( "sampler", "periodic", false );
GetInternalApplication( "select" )->SetParameterInt( "sampler.periodic.jitter", 50 );
GetInternalApplication( "select" )->SetParameterString( "strategy", "byclass", false );
GetInternalApplication( "select" )->SetParameterString( "strategy.byclass.in", ratesFileName, false );
break;
}
// select sample positions
ExecuteInternal( "select" );
GetInternalApplication( "extraction" )->SetParameterString( "vec", sampleFileName, false );
UpdateInternalParameters( "extraction" );
if( !selectedField.empty() )
GetInternalApplication( "extraction" )->SetParameterString( "field", selectedField, false );
GetInternalApplication( "extraction" )->SetParameterString( "outfield", "prefix", false );
GetInternalApplication( "extraction" )->SetParameterString( "outfield.prefix.name", "value_", false );
// extract sample descriptors
ExecuteInternal( "extraction" );
}
void TrainImagesBase::SelectAndExtractTrainSamples(const TrainFileNamesHandler &fileNames,
FloatVectorImageListType *imageList,
std::vector<std::string> vectorFileNames, SamplingStrategy strategy,
std::string selectedFieldName)
{
for( unsigned int i = 0; i < imageList->Size(); ++i )
{
std::string vectorFileName = vectorFileNames.empty() ? "" : vectorFileNames[i];
SelectAndExtractSamples( imageList->GetNthElement( i ), vectorFileName, fileNames.sampleOutputs[i],
fileNames.polyStatTrainOutputs[i], fileNames.ratesTrainOutputs[i], strategy,
selectedFieldName );
}
}
void TrainImagesBase::SelectAndExtractValidationSamples(const TrainFileNamesHandler &fileNames,
FloatVectorImageListType *imageList,
const std::vector<std::string> &validationVectorFileList)
{
for( unsigned int i = 0; i < imageList->Size(); ++i )
{
SelectAndExtractSamples( imageList->GetNthElement( i ), validationVectorFileList[i],
fileNames.sampleValidOutputs[i], fileNames.polyStatValidOutputs[i],
fileNames.ratesValidOutputs[i], Self::CLASS );
}
}
void TrainImagesBase::SplitTrainingToValidationSamples(const TrainFileNamesHandler &fileNames,
FloatVectorImageListType *imageList)
{
for( unsigned int i = 0; i < imageList->Size(); ++i )
{
SplitTrainingAndValidationSamples( imageList->GetNthElement( i ), fileNames.sampleOutputs[i],
fileNames.sampleTrainOutputs[i], fileNames.sampleValidOutputs[i],
fileNames.ratesTrainOutputs[i] );
}
}
void TrainImagesBase::SplitTrainingAndValidationSamples(FloatVectorImageType *image, std::string sampleFileName,
std::string sampleTrainFileName,
std::string sampleValidFileName,
std::string ratesTrainFileName)
{
// Split between training and validation
ogr::DataSource::Pointer source = ogr::DataSource::New( sampleFileName, ogr::DataSource::Modes::Read );
ogr::DataSource::Pointer destTrain = ogr::DataSource::New( sampleTrainFileName, ogr::DataSource::Modes::Overwrite );
ogr::DataSource::Pointer destValid = ogr::DataSource::New( sampleValidFileName, ogr::DataSource::Modes::Overwrite );
// read sampling rates from ratesTrainOutputs
SamplingRateCalculator::Pointer rateCalculator = SamplingRateCalculator::New();
rateCalculator->Read( ratesTrainFileName );
// Compute sampling rates for train and valid
const MapRateType &inputRates = rateCalculator->GetRatesByClass();
MapRateType trainRates;
MapRateType validRates;
otb::SamplingRateCalculator::TripletType tpt;
for( MapRateType::const_iterator it = inputRates.begin(); it != inputRates.end(); ++it )
{
double vtr = GetParameterFloat( "sample.vtr" );
unsigned long total = std::min( it->second.Required, it->second.Tot );
unsigned long neededValid = static_cast<unsigned long>(( double ) total * vtr );
unsigned long neededTrain = total - neededValid;
tpt.Tot = total;
tpt.Required = neededTrain;
tpt.Rate = ( 1.0 - vtr );
trainRates[it->first] = tpt;
tpt.Tot = neededValid;
tpt.Required = neededValid;
tpt.Rate = 1.0;
validRates[it->first] = tpt;
}
// Use an otb::OGRDataToSamplePositionFilter with 2 outputs
PeriodicSamplerType::SamplerParameterType param;
param.Offset = 0;
param.MaxJitter = 0;
PeriodicSamplerType::Pointer splitter = PeriodicSamplerType::New();
splitter->SetInput( image );
splitter->SetOGRData( source );
splitter->SetOutputPositionContainerAndRates( destTrain, trainRates, 0 );
splitter->SetOutputPositionContainerAndRates( destValid, validRates, 1 );
splitter->SetFieldName( this->GetParameterStringList( "sample.vfn" )[0] );
splitter->SetLayerIndex( 0 );
splitter->SetOriginFieldName( std::string( "" ) );
splitter->SetSamplerParameters( param );
splitter->GetStreamer()->SetAutomaticTiledStreaming( static_cast<unsigned int>(this->GetParameterInt( "ram" )) );
AddProcess( splitter->GetStreamer(), "Split samples between training and validation..." );
splitter->Update();
}
}
}
#endif
|