/usr/include/OTB-6.4/otbTrainRandomForests.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbTrainRandomForests_txx
#define otbTrainRandomForests_txx
#include "otbLearningApplicationBase.h"
#include "otbRandomForestsMachineLearningModel.h"
namespace otb
{
namespace Wrapper
{
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitRandomForestsParams()
{
AddChoice("classifier.rf", "Random forests classifier");
SetParameterDescription("classifier.rf",
"This group of parameters allows setting Random Forests classifier parameters. "
"See complete documentation here \\url{http://docs.opencv.org/modules/ml/doc/random_trees.html}.");
//MaxDepth
AddParameter(ParameterType_Int, "classifier.rf.max", "Maximum depth of the tree");
SetParameterInt("classifier.rf.max",5, false);
SetParameterDescription(
"classifier.rf.max",
"The depth of the tree. A low value will likely underfit and conversely a high value will likely overfit. "
"The optimal value can be obtained using cross validation or other suitable methods.");
//MinSampleCount
AddParameter(ParameterType_Int, "classifier.rf.min", "Minimum number of samples in each node");
SetParameterInt("classifier.rf.min",10, false);
SetParameterDescription(
"classifier.rf.min", "If the number of samples in a node is smaller than this parameter, "
"then the node will not be split. A reasonable value is a small percentage of the total data e.g. 1 percent.");
//RegressionAccuracy
AddParameter(ParameterType_Float, "classifier.rf.ra", "Termination Criteria for regression tree");
SetParameterFloat("classifier.rf.ra",0., false);
SetParameterDescription("classifier.rf.ra", "If all absolute differences between an estimated value in a node "
"and the values of the train samples in this node are smaller than this regression accuracy parameter, "
"then the node will not be split.");
//UseSurrogates : don't need to be exposed !
//AddParameter(ParameterType_Empty, "classifier.rf.sur", "Surrogate splits will be built");
//SetParameterDescription("classifier.rf.sur","These splits allow working with missing data and compute variable importance correctly.");
//MaxNumberOfCategories
AddParameter(ParameterType_Int, "classifier.rf.cat",
"Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split");
SetParameterInt("classifier.rf.cat",10, false);
SetParameterDescription(
"classifier.rf.cat",
"Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split.");
//Priors are not exposed.
//CalculateVariableImportance not exposed
//MaxNumberOfVariables
AddParameter(ParameterType_Int, "classifier.rf.var",
"Size of the randomly selected subset of features at each tree node");
SetParameterInt("classifier.rf.var",0, false);
SetParameterDescription(
"classifier.rf.var",
"The size of the subset of features, randomly selected at each tree node, that are used to find the best split(s). "
"If you set it to 0, then the size will be set to the square root of the total number of features.");
//MaxNumberOfTrees
AddParameter(ParameterType_Int, "classifier.rf.nbtrees",
"Maximum number of trees in the forest");
SetParameterInt("classifier.rf.nbtrees",100, false);
SetParameterDescription(
"classifier.rf.nbtrees",
"The maximum number of trees in the forest. Typically, the more trees you have, the better the accuracy. "
"However, the improvement in accuracy generally diminishes and reaches an asymptote for a certain number of trees. "
"Also to keep in mind, increasing the number of trees increases the prediction time linearly.");
//ForestAccuracy
AddParameter(ParameterType_Float, "classifier.rf.acc",
"Sufficient accuracy (OOB error)");
SetParameterFloat("classifier.rf.acc",0.01, false);
SetParameterDescription("classifier.rf.acc","Sufficient accuracy (OOB error).");
//TerminationCriteria not exposed
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::TrainRandomForests(typename ListSampleType::Pointer trainingListSample,
typename TargetListSampleType::Pointer trainingLabeledListSample,
std::string modelPath)
{
typedef otb::RandomForestsMachineLearningModel<InputValueType, OutputValueType> RandomForestType;
typename RandomForestType::Pointer classifier = RandomForestType::New();
classifier->SetRegressionMode(this->m_RegressionFlag);
classifier->SetInputListSample(trainingListSample);
classifier->SetTargetListSample(trainingLabeledListSample);
classifier->SetMaxDepth(GetParameterInt("classifier.rf.max"));
classifier->SetMinSampleCount(GetParameterInt("classifier.rf.min"));
classifier->SetRegressionAccuracy(GetParameterFloat("classifier.rf.ra"));
classifier->SetMaxNumberOfCategories(GetParameterInt("classifier.rf.cat"));
classifier->SetMaxNumberOfVariables(GetParameterInt("classifier.rf.var"));
classifier->SetMaxNumberOfTrees(GetParameterInt("classifier.rf.nbtrees"));
classifier->SetForestAccuracy(GetParameterFloat("classifier.rf.acc"));
classifier->Train();
classifier->Save(modelPath);
}
} //end namespace wrapper
} //end namespace otb
#endif
|