/usr/include/OTB-6.4/otbTrainSVM.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbTrainSVM_txx
#define otbTrainSVM_txx
#include "otbLearningApplicationBase.h"
#include "otbSVMMachineLearningModel.h"
namespace otb
{
namespace Wrapper
{
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitSVMParams()
{
AddChoice("classifier.svm", "SVM classifier (OpenCV)");
SetParameterDescription("classifier.svm", "This group of parameters allows setting SVM classifier parameters. "
"See complete documentation here \\url{http://docs.opencv.org/modules/ml/doc/support_vector_machines.html}.");
AddParameter(ParameterType_Choice, "classifier.svm.m", "SVM Model Type");
SetParameterDescription("classifier.svm.m", "Type of SVM formulation.");
if (this->m_RegressionFlag)
{
AddChoice("classifier.svm.m.epssvr", "Epsilon Support Vector Regression");
AddChoice("classifier.svm.m.nusvr", "Nu Support Vector Regression");
SetParameterString("classifier.svm.m", "epssvr", false);
}
else
{
AddChoice("classifier.svm.m.csvc", "C support vector classification");
AddChoice("classifier.svm.m.nusvc", "Nu support vector classification");
AddChoice("classifier.svm.m.oneclass", "Distribution estimation (One Class SVM)");
SetParameterString("classifier.svm.m", "csvc", false);
}
AddParameter(ParameterType_Choice, "classifier.svm.k", "SVM Kernel Type");
AddChoice("classifier.svm.k.linear", "Linear");
AddChoice("classifier.svm.k.rbf", "Gaussian radial basis function");
AddChoice("classifier.svm.k.poly", "Polynomial");
AddChoice("classifier.svm.k.sigmoid", "Sigmoid");
SetParameterString("classifier.svm.k", "linear", false);
SetParameterDescription("classifier.svm.k", "SVM Kernel Type.");
AddParameter(ParameterType_Float, "classifier.svm.c", "Cost parameter C");
SetParameterFloat("classifier.svm.c",1.0, false);
SetParameterDescription("classifier.svm.c",
"SVM models have a cost parameter C (1 by default) to control the trade-off"
" between training errors and forcing rigid margins.");
AddParameter(ParameterType_Float, "classifier.svm.nu",
"Parameter nu of a SVM optimization problem (NU_SVC / ONE_CLASS)");
SetParameterFloat("classifier.svm.nu",0.0, false);
SetParameterDescription("classifier.svm.nu",
"Parameter nu of a SVM optimization problem.");
if (this->m_RegressionFlag)
{
AddParameter(ParameterType_Float, "classifier.svm.p", "Parameter epsilon of a SVM optimization problem (EPS_SVR)");
SetParameterFloat("classifier.svm.p",1.0, false);
SetParameterDescription("classifier.svm.p", "Parameter epsilon of a SVM optimization problem (EPS_SVR).");
AddParameter(ParameterType_Choice,
"classifier.svm.term", "Termination criteria");
SetParameterDescription("classifier.svm.term",
"Termination criteria for iterative algorithm");
AddChoice("classifier.svm.term.iter",
"Stops when maximum iteration is reached.");
AddChoice("classifier.svm.term.eps",
"Stops when accuracy is lower than epsilon.");
AddChoice("classifier.svm.term.all",
"Stops when either iteration or epsilon criteria is true");
AddParameter(ParameterType_Float, "classifier.svm.iter", "Maximum iteration");
SetParameterFloat("classifier.svm.iter",1000, false);
SetParameterDescription("classifier.svm.iter",
"Maximum number of iterations (corresponds to the termination criteria 'iter').");
AddParameter(ParameterType_Float, "classifier.svm.eps",
"Epsilon accuracy threshold");
SetParameterFloat("classifier.svm.eps",FLT_EPSILON, false);
SetParameterDescription("classifier.svm.eps",
"Epsilon accuracy (corresponds to the termination criteria 'eps').");
}
AddParameter(ParameterType_Float, "classifier.svm.coef0",
"Parameter coef0 of a kernel function (POLY / SIGMOID)");
SetParameterFloat("classifier.svm.coef0",0.0, false);
SetParameterDescription("classifier.svm.coef0",
"Parameter coef0 of a kernel function (POLY / SIGMOID).");
AddParameter(ParameterType_Float, "classifier.svm.gamma",
"Parameter gamma of a kernel function (POLY / RBF / SIGMOID)");
SetParameterFloat("classifier.svm.gamma",1.0, false);
SetParameterDescription("classifier.svm.gamma",
"Parameter gamma of a kernel function (POLY / RBF / SIGMOID).");
AddParameter(ParameterType_Float, "classifier.svm.degree",
"Parameter degree of a kernel function (POLY)");
SetParameterFloat("classifier.svm.degree",1.0, false);
SetParameterDescription("classifier.svm.degree",
"Parameter degree of a kernel function (POLY).");
AddParameter(ParameterType_Empty, "classifier.svm.opt",
"Parameters optimization");
MandatoryOff("classifier.svm.opt");
SetParameterDescription("classifier.svm.opt", "SVM parameters optimization flag.\n"
"-If set to True, then the optimal SVM parameters will be estimated. "
"Parameters are considered optimal by OpenCV when the cross-validation estimate of "
"the test set error is minimal. Finally, the SVM training process is computed "
"10 times with these optimal parameters over subsets corresponding to 1/10th of "
"the training samples using the k-fold cross-validation (with k = 10).\n-If set "
"to False, the SVM classification process will be computed once with the "
"currently set input SVM parameters over the training samples.\n-Thus, even "
"with identical input SVM parameters and a similar random seed, the output "
"SVM models will be different according to the method used (optimized or not) "
"because the samples are not identically processed within OpenCV.");
}
template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::TrainSVM(typename ListSampleType::Pointer trainingListSample,
typename TargetListSampleType::Pointer trainingLabeledListSample,
std::string modelPath)
{
typedef otb::SVMMachineLearningModel<InputValueType, OutputValueType> SVMType;
typename SVMType::Pointer SVMClassifier = SVMType::New();
SVMClassifier->SetRegressionMode(this->m_RegressionFlag);
SVMClassifier->SetInputListSample(trainingListSample);
SVMClassifier->SetTargetListSample(trainingLabeledListSample);
switch (GetParameterInt("classifier.svm.k"))
{
case 0: // LINEAR
SVMClassifier->SetKernelType(CvSVM::LINEAR);
std::cout << "CvSVM::LINEAR = " << CvSVM::LINEAR << std::endl;
break;
case 1: // RBF
SVMClassifier->SetKernelType(CvSVM::RBF);
std::cout << "CvSVM::RBF = " << CvSVM::RBF << std::endl;
break;
case 2: // POLY
SVMClassifier->SetKernelType(CvSVM::POLY);
std::cout << "CvSVM::POLY = " << CvSVM::POLY << std::endl;
break;
case 3: // SIGMOID
SVMClassifier->SetKernelType(CvSVM::SIGMOID);
std::cout << "CvSVM::SIGMOID = " << CvSVM::SIGMOID << std::endl;
break;
default: // DEFAULT = LINEAR
SVMClassifier->SetKernelType(CvSVM::LINEAR);
std::cout << "CvSVM::LINEAR = " << CvSVM::LINEAR << std::endl;
break;
}
if (this->m_RegressionFlag)
{
switch (GetParameterInt("classifier.svm.m"))
{
case 0: // EPS_SVR
SVMClassifier->SetSVMType(CvSVM::EPS_SVR);
std::cout<<"CvSVM::EPS_SVR = "<<CvSVM::EPS_SVR<<std::endl;
break;
case 1: // NU_SVR
SVMClassifier->SetSVMType(CvSVM::NU_SVR);
std::cout<<"CvSVM::NU_SVR = "<<CvSVM::NU_SVR<<std::endl;
break;
default: // DEFAULT = EPS_SVR
SVMClassifier->SetSVMType(CvSVM::EPS_SVR);
std::cout << "CvSVM::EPS_SVR = " << CvSVM::EPS_SVR << std::endl;
break;
}
}
else
{
switch (GetParameterInt("classifier.svm.m"))
{
case 0: // C_SVC
SVMClassifier->SetSVMType(CvSVM::C_SVC);
std::cout << "CvSVM::C_SVC = " << CvSVM::C_SVC << std::endl;
break;
case 1: // NU_SVC
SVMClassifier->SetSVMType(CvSVM::NU_SVC);
std::cout << "CvSVM::NU_SVC = " << CvSVM::NU_SVC << std::endl;
break;
case 2: // ONE_CLASS
SVMClassifier->SetSVMType(CvSVM::ONE_CLASS);
std::cout << "CvSVM::ONE_CLASS = " << CvSVM::ONE_CLASS << std::endl;
break;
default: // DEFAULT = C_SVC
SVMClassifier->SetSVMType(CvSVM::C_SVC);
std::cout << "CvSVM::C_SVC = " << CvSVM::C_SVC << std::endl;
break;
}
}
SVMClassifier->SetC(GetParameterFloat("classifier.svm.c"));
SVMClassifier->SetNu(GetParameterFloat("classifier.svm.nu"));
if (this->m_RegressionFlag)
{
SVMClassifier->SetP(GetParameterFloat("classifier.svm.p"));
switch (GetParameterInt("classifier.svm.term"))
{
case 0: // ITER
SVMClassifier->SetTermCriteriaType(CV_TERMCRIT_ITER);
break;
case 1: // EPS
SVMClassifier->SetTermCriteriaType(CV_TERMCRIT_EPS);
break;
case 2: // ITER+EPS
SVMClassifier->SetTermCriteriaType(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS);
break;
default:
SVMClassifier->SetTermCriteriaType(CV_TERMCRIT_ITER);
break;
}
SVMClassifier->SetMaxIter(GetParameterInt("classifier.svm.iter"));
SVMClassifier->SetEpsilon(GetParameterFloat("classifier.svm.eps"));
}
SVMClassifier->SetCoef0(GetParameterFloat("classifier.svm.coef0"));
SVMClassifier->SetGamma(GetParameterFloat("classifier.svm.gamma"));
SVMClassifier->SetDegree(GetParameterFloat("classifier.svm.degree"));
if (IsParameterEnabled("classifier.svm.opt"))
{
SVMClassifier->SetParameterOptimization(true);
}
SVMClassifier->Train();
SVMClassifier->Save(modelPath);
// Update the displayed parameters in the GUI after the training process, for further use of them
SetParameterFloat("classifier.svm.c",static_cast<float> (SVMClassifier->GetOutputC()), false);
SetParameterFloat("classifier.svm.nu",static_cast<float> (SVMClassifier->GetOutputNu()), false);
if (this->m_RegressionFlag)
{
SetParameterFloat("classifier.svm.p",static_cast<float> (SVMClassifier->GetOutputP()), false);
}
SetParameterFloat("classifier.svm.coef0",static_cast<float> (SVMClassifier->GetOutputCoef0()), false);
SetParameterFloat("classifier.svm.gamma",static_cast<float> (SVMClassifier->GetOutputGamma()), false);
SetParameterFloat("classifier.svm.degree",static_cast<float> (SVMClassifier->GetOutputDegree()), false);
}
} //end namespace wrapper
} //end namespace otb
#endif
|