This file is indexed.

/usr/include/OTB-6.4/otbTrainSharkRandomForests.txx is in libotb-dev 6.4.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbTrainSharkRandomForests_txx
#define otbTrainSharkRandomForests_txx

#include "otbLearningApplicationBase.h"
#include "otbSharkRandomForestsMachineLearningModel.h"

namespace otb
{
namespace Wrapper
{

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::InitSharkRandomForestsParams()
{


  AddChoice("classifier.sharkrf", "Shark Random forests classifier");
  SetParameterDescription("classifier.sharkrf",
                          "This group of parameters allows setting Shark Random Forests classifier parameters. "
                          "See complete documentation here \\url{http://image.diku.dk/shark/doxygen_pages/html/classshark_1_1_r_f_trainer.html}.\n It is noteworthy that training is parallel.");
  //MaxNumberOfTrees
  AddParameter(ParameterType_Int, "classifier.sharkrf.nbtrees",
               "Maximum number of trees in the forest");
  SetParameterInt("classifier.sharkrf.nbtrees",100, false);
  SetParameterDescription(
    "classifier.sharkrf.nbtrees",
    "The maximum number of trees in the forest. Typically, the more trees you have, the better the accuracy. "
    "However, the improvement in accuracy generally diminishes and reaches an asymptote for a certain number of trees. "
    "Also to keep in mind, increasing the number of trees increases the prediction time linearly.");
  
  
  //NodeSize
  AddParameter(ParameterType_Int, "classifier.sharkrf.nodesize", "Min size of the node for a split");
  SetParameterInt("classifier.sharkrf.nodesize",25, false);
  SetParameterDescription(
    "classifier.sharkrf.nodesize",
    "If the number of samples in a node is smaller than this parameter, "
    "then the node will not be split. A reasonable value is a small percentage of the total data e.g. 1 percent.");

  //MTry
  AddParameter(ParameterType_Int, "classifier.sharkrf.mtry", "Number of features tested at each node");
  SetParameterInt("classifier.sharkrf.mtry",0, false);
  SetParameterDescription(
    "classifier.sharkrf.mtry",
    "The number of features (variables) which will be tested at each node in "
    "order to compute the split. If set to zero, the square root of the number of "
    "features is used.");


  //OOB Ratio
  AddParameter(ParameterType_Float, "classifier.sharkrf.oobr", "Out of bound ratio");
  SetParameterFloat("classifier.sharkrf.oobr",0.66, false);
  SetParameterDescription("classifier.sharkrf.oobr", 
                          "Set the fraction of the original training dataset to use as the out of bag sample." 
                          "A good default value is 0.66. ");
}

template <class TInputValue, class TOutputValue>
void
LearningApplicationBase<TInputValue,TOutputValue>
::TrainSharkRandomForests(typename ListSampleType::Pointer trainingListSample,
                          typename TargetListSampleType::Pointer trainingLabeledListSample,
                          std::string modelPath)
{
  typedef otb::SharkRandomForestsMachineLearningModel<InputValueType, OutputValueType> SharkRandomForestType;
  typename SharkRandomForestType::Pointer classifier = SharkRandomForestType::New();
  classifier->SetRegressionMode(this->m_RegressionFlag);
  classifier->SetInputListSample(trainingListSample);
  classifier->SetTargetListSample(trainingLabeledListSample);
  classifier->SetNodeSize(GetParameterInt("classifier.sharkrf.nodesize"));
  classifier->SetOobRatio(GetParameterFloat("classifier.sharkrf.oobr"));
  classifier->SetNumberOfTrees(GetParameterInt("classifier.sharkrf.nbtrees"));
  classifier->SetMTry(GetParameterInt("classifier.sharkrf.mtry"));

  classifier->Train();
  classifier->Save(modelPath);
}

} //end namespace wrapper
} //end namespace otb

#endif