/usr/include/OTB-6.4/otbTrainVectorBase.txx is in libotb-dev 6.4.0+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | /*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbTrainVectorBase_txx
#define otbTrainVectorBase_txx
#include "otbTrainVectorBase.h"
namespace otb
{
namespace Wrapper
{
void TrainVectorBase::DoInit()
{
// Common Parameters for all Learning Application
AddParameter( ParameterType_Group, "io", "Input and output data" );
SetParameterDescription( "io",
"This group of parameters allows setting input and output data." );
AddParameter( ParameterType_InputVectorDataList, "io.vd", "Input Vector Data" );
SetParameterDescription( "io.vd",
"Input geometries used for training (note : all geometries from the layer will be used)" );
AddParameter( ParameterType_InputFilename, "io.stats", "Input XML image statistics file" );
MandatoryOff( "io.stats" );
SetParameterDescription( "io.stats",
"XML file containing mean and variance of each feature." );
AddParameter( ParameterType_OutputFilename, "io.out", "Output model" );
SetParameterDescription( "io.out",
"Output file containing the model estimated (.txt format)." );
AddParameter( ParameterType_Int, "layer", "Layer Index" );
SetParameterDescription( "layer",
"Index of the layer to use in the input vector file." );
MandatoryOff( "layer" );
SetDefaultParameterInt( "layer", 0 );
AddParameter(ParameterType_ListView, "feat", "Field names for training features.");
SetParameterDescription("feat",
"List of field names in the input vector data to be used as features for training.");
// Add validation data used to compute confusion matrix or contingency table
AddParameter( ParameterType_Group, "valid", "Validation data" );
SetParameterDescription( "valid",
"This group of parameters defines validation data." );
AddParameter( ParameterType_InputVectorDataList, "valid.vd",
"Validation Vector Data" );
SetParameterDescription( "valid.vd", "Geometries used for validation "
"(must contain the same fields used for training, all geometries from the layer will be used)" );
MandatoryOff( "valid.vd" );
AddParameter( ParameterType_Int, "valid.layer", "Layer Index" );
SetParameterDescription( "valid.layer",
"Index of the layer to use in the validation vector file." );
MandatoryOff( "valid.layer" );
SetDefaultParameterInt( "valid.layer", 0 );
// Add class field if we used validation
AddParameter( ParameterType_ListView, "cfield",
"Field containing the class integer label for supervision" );
SetParameterDescription( "cfield",
"Field containing the class id for supervision. "
"The values in this field shall be cast into integers. "
"Only geometries with this field available will be taken into account." );
SetListViewSingleSelectionMode( "cfield", true );
// Add a new parameter to compute confusion matrix / contingency table
AddParameter( ParameterType_OutputFilename, "io.confmatout",
"Output confusion matrix or contingency table" );
SetParameterDescription( "io.confmatout",
"Output file containing the confusion matrix or contingency table (.csv format)."
"The contingency table is output when we unsupervised algorithms is used otherwise the confusion matrix is output." );
MandatoryOff( "io.confmatout" );
AddParameter(ParameterType_Empty, "v", "Verbose mode");
EnableParameter("v");
SetParameterDescription("v", "Verbose mode, display the contingency table result.");
MandatoryOff("v");
// Doc example parameter settings
SetDocExampleParameterValue( "io.vd", "vectorData.shp" );
SetDocExampleParameterValue( "io.stats", "meanVar.xml" );
SetDocExampleParameterValue( "io.out", "svmModel.svm" );
SetDocExampleParameterValue( "feat", "perimeter area width" );
SetDocExampleParameterValue( "cfield", "predicted" );
// Add parameters for the classifier choice
Superclass::DoInit();
AddRANDParameter();
}
void TrainVectorBase::DoUpdateParameters()
{
// if vector data is present and updated then reload fields
if( HasValue( "io.vd" ) )
{
std::vector<std::string> vectorFileList = GetParameterStringList( "io.vd" );
ogr::DataSource::Pointer ogrDS = ogr::DataSource::New( vectorFileList[0], ogr::DataSource::Modes::Read );
ogr::Layer layer = ogrDS->GetLayer( static_cast<size_t>( this->GetParameterInt( "layer" ) ) );
ogr::Feature feature = layer.ogr().GetNextFeature();
ClearChoices( "feat" );
ClearChoices( "cfield" );
for( int iField = 0; iField < feature.ogr().GetFieldCount(); iField++ )
{
std::string key, item = feature.ogr().GetFieldDefnRef( iField )->GetNameRef();
key = item;
std::string::iterator end = std::remove_if( key.begin(), key.end(), IsNotAlphaNum );
std::transform( key.begin(), end, key.begin(), tolower );
OGRFieldType fieldType = feature.ogr().GetFieldDefnRef( iField )->GetType();
if( fieldType == OFTInteger || ogr::version_proxy::IsOFTInteger64( fieldType ) || fieldType == OFTReal )
{
std::string tmpKey = "feat." + key.substr( 0, static_cast<unsigned long>( end - key.begin() ) );
AddChoice( tmpKey, item );
}
if( fieldType == OFTString || fieldType == OFTInteger || ogr::version_proxy::IsOFTInteger64( fieldType ) )
{
std::string tmpKey = "cfield." + key.substr( 0, static_cast<unsigned long>( end - key.begin() ) );
AddChoice( tmpKey, item );
}
}
}
}
void TrainVectorBase::DoExecute()
{
m_FeaturesInfo.SetFieldNames( GetChoiceNames( "feat" ), GetSelectedItems( "feat" ));
// Check input parameters
if( m_FeaturesInfo.m_SelectedIdx.empty() )
{
otbAppLogFATAL( << "No features have been selected to train the classifier on!" );
}
ShiftScaleParameters measurement = GetStatistics( m_FeaturesInfo.m_NbFeatures );
ExtractAllSamples( measurement );
this->Train( m_TrainingSamplesWithLabel.listSample, m_TrainingSamplesWithLabel.labeledListSample, GetParameterString( "io.out" ) );
m_PredictedList =
this->Classify( m_ClassificationSamplesWithLabel.listSample, GetParameterString( "io.out" ) );
}
void TrainVectorBase::ExtractAllSamples(const ShiftScaleParameters &measurement)
{
m_TrainingSamplesWithLabel = ExtractTrainingSamplesWithLabel(measurement);
m_ClassificationSamplesWithLabel = ExtractClassificationSamplesWithLabel(measurement);
}
TrainVectorBase::SamplesWithLabel
TrainVectorBase::ExtractTrainingSamplesWithLabel(const ShiftScaleParameters &measurement)
{
return ExtractSamplesWithLabel( "io.vd", "layer", measurement);
}
TrainVectorBase::SamplesWithLabel
TrainVectorBase::ExtractClassificationSamplesWithLabel(const ShiftScaleParameters &measurement)
{
if(GetClassifierCategory() == Supervised)
{
SamplesWithLabel tmpSamplesWithLabel;
SamplesWithLabel validationSamplesWithLabel = ExtractSamplesWithLabel( "valid.vd", "valid.layer", measurement );
//Test the input validation set size
if( validationSamplesWithLabel.labeledListSample->Size() != 0 )
{
tmpSamplesWithLabel.listSample = validationSamplesWithLabel.listSample;
tmpSamplesWithLabel.labeledListSample = validationSamplesWithLabel.labeledListSample;
}
else
{
otbAppLogWARNING(
"The validation set is empty. The performance estimation is done using the input training set in this case." );
tmpSamplesWithLabel.listSample = m_TrainingSamplesWithLabel.listSample;
tmpSamplesWithLabel.labeledListSample = m_TrainingSamplesWithLabel.labeledListSample;
}
return tmpSamplesWithLabel;
}
else
{
return m_TrainingSamplesWithLabel;
}
}
TrainVectorBase::ShiftScaleParameters
TrainVectorBase::GetStatistics(unsigned int nbFeatures)
{
ShiftScaleParameters measurement = ShiftScaleParameters();
if( HasValue( "io.stats" ) && IsParameterEnabled( "io.stats" ) )
{
StatisticsReader::Pointer statisticsReader = StatisticsReader::New();
std::string XMLfile = GetParameterString( "io.stats" );
statisticsReader->SetFileName( XMLfile.c_str() );
measurement.meanMeasurementVector = statisticsReader->GetStatisticVectorByName( "mean" );
measurement.stddevMeasurementVector = statisticsReader->GetStatisticVectorByName( "stddev" );
}
else
{
measurement.meanMeasurementVector.SetSize( nbFeatures );
measurement.meanMeasurementVector.Fill( 0. );
measurement.stddevMeasurementVector.SetSize( nbFeatures );
measurement.stddevMeasurementVector.Fill( 1. );
}
return measurement;
}
TrainVectorBase::SamplesWithLabel
TrainVectorBase::ExtractSamplesWithLabel(std::string parameterName, std::string parameterLayer,
const ShiftScaleParameters &measurement)
{
SamplesWithLabel samplesWithLabel;
if( HasValue( parameterName ) && IsParameterEnabled( parameterName ) )
{
ListSampleType::Pointer input = ListSampleType::New();
TargetListSampleType::Pointer target = TargetListSampleType::New();
input->SetMeasurementVectorSize( m_FeaturesInfo.m_NbFeatures );
std::vector<std::string> fileList = this->GetParameterStringList( parameterName );
for( unsigned int k = 0; k < fileList.size(); k++ )
{
otbAppLogINFO( "Reading vector file " << k + 1 << "/" << fileList.size() );
ogr::DataSource::Pointer source = ogr::DataSource::New( fileList[k], ogr::DataSource::Modes::Read );
ogr::Layer layer = source->GetLayer( static_cast<size_t>(this->GetParameterInt( parameterLayer )) );
ogr::Feature feature = layer.ogr().GetNextFeature();
bool goesOn = feature.addr() != 0;
if( !goesOn )
{
otbAppLogWARNING( "The layer " << GetParameterInt( parameterLayer ) << " of " << fileList[k]
<< " is empty, input is skipped." );
continue;
}
// Check all needed fields are present :
// - check class field if we use supervised classification or if class field name is not empty
int cFieldIndex = feature.ogr().GetFieldIndex( m_FeaturesInfo.m_SelectedCFieldName.c_str() );
if( cFieldIndex < 0 && !m_FeaturesInfo.m_SelectedCFieldName.empty())
{
otbAppLogFATAL( "The field name for class label (" << m_FeaturesInfo.m_SelectedCFieldName
<< ") has not been found in the vector file "
<< fileList[k] );
}
// - check feature fields
std::vector<int> featureFieldIndex( m_FeaturesInfo.m_NbFeatures, -1 );
for( unsigned int i = 0; i < m_FeaturesInfo.m_NbFeatures; i++ )
{
featureFieldIndex[i] = feature.ogr().GetFieldIndex( m_FeaturesInfo.m_SelectedNames[i].c_str() );
if( featureFieldIndex[i] < 0 )
otbAppLogFATAL( "The field name for feature " << m_FeaturesInfo.m_SelectedNames[i]
<< " has not been found in the vector file "
<< fileList[k] );
}
while( goesOn )
{
// Retrieve all the features for each field in the ogr layer.
MeasurementType mv;
mv.SetSize( m_FeaturesInfo.m_NbFeatures );
for( unsigned int idx = 0; idx < m_FeaturesInfo.m_NbFeatures; ++idx )
mv[idx] = feature.ogr().GetFieldAsDouble( featureFieldIndex[idx] );
input->PushBack( mv );
if(cFieldIndex>=0 && ogr::Field(feature,cFieldIndex).HasBeenSet())
target->PushBack( feature.ogr().GetFieldAsInteger( cFieldIndex ) );
else
target->PushBack( 0 );
feature = layer.ogr().GetNextFeature();
goesOn = feature.addr() != 0;
}
}
ShiftScaleFilterType::Pointer shiftScaleFilter = ShiftScaleFilterType::New();
shiftScaleFilter->SetInput( input );
shiftScaleFilter->SetShifts( measurement.meanMeasurementVector );
shiftScaleFilter->SetScales( measurement.stddevMeasurementVector );
shiftScaleFilter->Update();
samplesWithLabel.listSample = shiftScaleFilter->GetOutput();
samplesWithLabel.labeledListSample = target;
samplesWithLabel.listSample->DisconnectPipeline();
}
return samplesWithLabel;
}
}
}
#endif
|